
 ​

Valkey Over RDMA：极致的高性能KV存储​

皮振伟 <pizhenwei@tensorfer.com>​
张量跃迁创始人，Valkey Top贡献者​

Background The Horsehead Nebula and its surroundings. The reflection nebula NGC 2023 in the bottom left corner. / Stephanh / License: CC BY 4.0​

mailto:pizhenwei@tensorfer.com

问题背景和解决方案

Valkey 的性能瓶颈

Valkey 历史上使用单线程模型，在 Intel Skylake 平台上使用 TCP 测试， 1KB 大小的 KV 场景下，具备

大约 160K QPS 。1 个 Master 和多个 Replica 的部署模式能一定程度缓解极端场景下的性能问题：

多Replica带来的成本上升

同步数据的延迟问题

极端场景下的缓存击穿问题

Primary

Replica0 ReplicaN

Valkey 的热点函数分布

Children Self Command Shared Object Symbol

7.67% 7.67% redis-server [ip_tables] [k] ipt_do_table

4.56% 4.56% redis-server [xt_tcpudp] [k] tcp_mt

3.78% 3.78% redis-server [kernel.vmlinux] [k] tcp_sendmsg_locked

3.61% 3.61% redis-server [kernel.vmlinux] [k] _raw_spin_lock

2.56% 2.56% redis-server [kernel.vmlinux] [k] copy_user_generic_unrolled

2.30% 2.30% redis-server [kernel.vmlinux] [k] tcp_recvmsg

1.91% 1.91% redis-server [kernel.vmlinux] [k] sock_poll

1.77% 1.77% redis-server [kernel.vmlinux] [k] sock_rfree

1.73% 1.73% redis-server [kernel.vmlinux] [k] ip_send_check

1.68% 1.68% redis-server [kernel.vmlinux] [k] _raw_spin_lock_bh

1.45% 1.45% redis-server [kernel.vmlinux] [k] __fget

1.42% 1.42% redis-server [kernel.vmlinux] [k] tcp_cleanup_rbuf

1.39% 1.39% redis-server [kernel.vmlinux] [k] tcp_poll

1.26% 1.26% redis-server [kernel.vmlinux] [k] __tcp_transmit_skb

socket编程模型

while (ret = read(sockfd, buf, sizeof(buf)) > 0) {

handle_input(buf, ret);

}

从sockfd中读取的数据可长可短

数据报文大小不在流数据中体现

编程模型简单

RDMA编程模型

ctx->buf = memalign(page_size, size); /* 提前申请一定长度的内存 */

ctx->mr = ibv_reg_mr(ctx->pd, ctx->buf, size, access_flags); /* 申请的内存注册到硬件中 */

struct ibv_sge list = {

.addr = (uintptr_t) ctx->buf, .length = ctx->size, .lkey = ctx->mr->lkey

};

struct ibv_recv_wr wr = {

.wr_id = PINGPONG_RECV_WRID,

.sg_list = &list,

.num_sge = 1,

};

ret = ibv_post_recv(ctx->qp, &wr, &bad_wr); /* 通知网卡接收报文到特定的内存中 */

需要提前协商内存大小和并发度等

报文数据不需要CPU额外处理

RDMA编程模型复杂

事件驱动模型
TCP

event.events = EPOLLIN | EPOLLOUT;

epoll_ctl(epfd, EPOLL_CTL_ADD, fd, &event);

RDMA

ibv_post_recv(qp, &wr, &bad_wr);

ibv_post_send(qp, &send_wr, &bad_wr);

…

ibv_poll_cq(cq, 1, &wc);

switch (wc.opcode) {

case IBV_WC_RECV: ...

case IBV_WC_RECV_RDMA_WITH_IMM: ...

case IBV_WC_SEND: …

… }

RDMA 编程没有 POLLOUT 事件，不能由外部触发 write_handler ！

RDMA --- EPOLLIN/EPOLLOUT 事件模拟
EPOLLIN

1. ibv_comp_channel 可以被 EPOLLIN 事件唤醒，并处理 CQ 事件。

2. 和 Remote Side 使用 RDMA WRITE WITH IMM 交换数据，收到了数据则产生 CQ 事件。

3. 则 EPOLLIN 处理的过程中，可以覆盖“收到了数据”逻辑。

EPOLLOUT

4. ibv_comp_channel 缺少 EPOLLOUT 事件唤醒。

5. 在 RDMA 连接驱动中，使用链表存储所有的 Write Handler 作为 pending data 。

6. Valkey 在陷入事件等待循环前，尝试处理 pending data 。

7. 在 RDMA 驱动中处理所有的 pending data ，尝试发送数据。

网络I/O 模型抽象

typedef struct ConnectionType {

int (*listen)(connListener *listener);

connection *(*conn_create)(void);

connection *(*conn_create_accepted)(int fd, void *priv);

void (*shutdown)(struct connection *conn);

void (*close)(struct connection *conn);

int (*accept)(struct connection *conn, ConnectionCallbackFunc accept_handler);

int (*read)(struct connection *conn, void *buf, size_t buf_len);

int (*set_read_handler)(struct connection *conn, ConnectionCallbackFunc handler);

int (*has_pending_data)(void);

int (*process_pending_data)(void);

...

} ConnectionType;

抽象后的网络I/O 模型支持TCP、Unix Socket、TLS（可选module编译）和RDMA（可选module编译）

Valkey Over RDMA协议设计

RDMA在流式数据交换协议下的问题

Hello World 的协议报文：

*3\r\n$3\r\nSET\r\n$5\r\nHello\r\n$5\r\nWorld\r\n

不同的命令也有不同的长度。例如 PING 命令长度较短，但是 SET KEY VALUE 命令可长可短。

执行 GET KEY 命令，很难预测返回的 VALUE 有多少个字节。

INFO 命令通常需要一次发送即可，返回的报文通常在很多个片段中。

如果使用 Receive buffer 来接收消息：

多大比较合适？例如 GET KEY ，无法预测即将返回的 VALUE 长度，不希望在 RDMA 场景下对消息

的长度带来任何限制。

多少个 Receive buffer 比较合适呢？例如 INFO 命令可能会返回多个数据片段， COMMAND 命令可

能返回数百个数据片段。

如果使用一个 Receive buffer 接收消息，在接收到消息后回复 ACK ，并请求接下来的数据，可以节

省 Receive buffer ，但是带来了额外的 RTT 开销。

Valkey Over RDMA传输协议设计

Redis/Valkey Over RDMA 传输协议整体上分成 2 部分：

Control-Plane

使用固定大小 32 字节的消息（大端格式），用于交换“控制消息”。使用 IBV_WR_SEND 操作。

Data-Plane

使用 IBV_WR_RDMA_WRITE （可选）和 IBV_WR_RDMA_WRITE_WITH_IMM （必选）交换业务数

据。

Valkey Over RDMA控制消息

GetServerFeature ：客户端用于获取服务端的特性支持。

SetClientFeature ：客户端用于设置特征支持（服务端的特性的子集）。

CommandFoo ：未来可支持的可选命令。

GetServerFeature 和 SetClientFeature 允许在未来支持更多的功能和扩展。例如通过特性协商

FeatureFoo 决定是否支持 CommandFoo 。

Keepalive ：简单的探活报文，用于发现 Remote Side 服务器崩溃等。

RegisterXferMemory ：注册数据传输缓存。该缓存对于自身来说是“ RX transfer buffer“ ，对于

Remote Side 来说则是“ TX transfer buffer” 。

typedef struct ValkeyRdmaMemory {

uint16_t opcode;

uint8_t reserved[14];

uint64_t addr;

uint32_t length;

uint32_t key;

} ValkeyRdmaMemory

Valkey Over RDMA数据交换
 valkey-client valkey-server

 setup RX buffer

[@ibv_post_recv] <---- Register transfer memory [@IBV_WR_SEND] ------

setup TX buffer

 ----- Register transfer memory [@IBV_WR_SEND] -----> [@ibv_post_recv]

 setup TX buffer

 -- Valkey commands [@IBV_WR_RDMA_WRITE_WITH_IMM] -->

 <- Valkey response [@IBV_WR_RDMA_WRITE_WITH_IMM] ---

RX is full

 ----- Register transfer memory [@IBV_WR_SEND] -----> [@ibv_post_recv]

 setup TX buffer

 <- Valkey response [@IBV_WR_RDMA_WRITE_WITH_IMM] ---

 RX is full

[@ibv_post_recv] <---- Register transfer memory [@IBV_WR_SEND] ------

setup TX buffer

 -- Valkey commands [@IBV_WR_RDMA_WRITE_WITH_IMM] -->

 <- Valkey response [@IBV_WR_RDMA_WRITE_WITH_IMM] ---

Valkey Over RDMA WRITE/RDMA WRITE WITH IMM优化
*3\r\n

$3\r\nSET\r\n

$5\r\nHello\r\n

$5\r\nWorld\r\n

RDMA WRITE WITH IMM(4)

RDMA WRITE WITH IMM(9)

RDMA WRITE WITH IMM(11)

RDMA WRITE WITH IMM(11)

RDMA WRITE

RDMA WRITE

RDMA WRITE

RDMA WRITE WITH IMM(35)

类writev 操作提供更好的性能！

Remote Side 将收到 4 次通知！

Remote Side 将收到 1 次通知

libvalkey Zero Copy优化
int valkeyBufferRead(valkeyContext *c) {

 char buf[1024 * 16];

 nread = c->funcs->read(c, buf, sizeof(buf));

 if (nread > 0 && valkeyReaderFeed(c->reader, buf, nread) != VALKEY_OK) {

 }

}

int valkeyBufferRead(valkeyContext *c) {

 if (c->funcs->read_zc) {

 char *zc_buf;

 nread = c->funcs->read_zc(c, &zc_buf);

 if (nread > 0 && valkeyReaderFeed(c->reader, zc_buf, nread) != VALKEY_OK) {

 }

 return c->funcs->read_zc_done(c);

}

修改前，需

要内存复制

修改后，避

免内存复制

valkey-server硬件中断隔离优化
Pin hardware interrupt vectors [0, 3] to CPU [0, 3].

Set CPU affinity for valkey to CPU [4, X].

Any valkey server uses a random RDMA completion vector [-1].

All valkey servers will not affect each other and will be isolated from kernel

interrupts.

 SYS SYS SYS SYS VALKEY VALKEY VALKEY

 | | | | | | |

 CPU0 CPU1 CPU2 CPU3 CPU4 CPU5 ... CPUX

 | | | |

 INTR0 INTR1 INTR2 INTR3

valkey-server资源隔离优化
Pin hardware interrupt vectors [0, X] to CPU [0, X].

Set CPU affinity for valkey [M] to CPU [M].

Valkey server [M] uses RDMA completion vector [M].

A single CPU [M] handles hardware interrupts, the RDMA completion vector [M], and the

valkey server [M] within its context only. This avoids overhead and function calls

across multiple CPUs, fully isolating each valkey server from one another.

 VALKEY VALKEY VALKEY VALKEY VALKEY VALKEY VALKEY

 | | | | | | |

 CPU0 CPU1 CPU2 CPU3 CPU4 CPU5 ... CPUX

 | | | | | | |

 INTR0 INTR1 INTR2 INTR3 INTR4 INTR5 INTRX

Valkey Over RDMA性能表现

valkey-server资源隔离优化

服务端： ./src/valkey-server --port 6379 --rdma-bind HOST --rdma-port 6379 --loglevel verbose --protected-mode no --

server_cpulist 12 --bio_cpulist 3 --aof_rewrite_cpulist 13 --bgsave_cpulist 13 --appendonly no

客户端： ./src/valkey-benchmark -h HOST -p 6379 -c 30 -n 10000000 --threads 4 -d 1024 -r 10000000 -t ping,set,get --rdma

测试硬件： Intel(R) Xeon(R) Platinum 8260/Mellanox ConnectX-5

测试软件： Debian GNU/Linux 9 ， Linux-5.4

Valkey Over RDMA未来展望

Valkey Over RDMA未来展望

Valkey-server

更好地支持Zero Copy，进一步提升性能

RDMA Buffer动态自适应大小

Valkey客户端

VALKEY-GLIDE支持RDMA，现阶段Rust RDMA缺少官方支持是最大的限制

场景支持

Valkey更好地支持LMcache等AI场景

Thank You
皮振伟 <pizhenwei@tensorfer.com>​
张量跃迁创始人，Valkey Top贡献者​

mailto:pizhenwei@tensorfer.com

