KEYSP__ACE

2025/ :u;?

: Wy - R ; 7R 15 + » : - . R, £ . y] g

- Figi TR

Valkey Over RDMA: tREBVSEREKVIZENE

R R1E <pizhenwei@tensorfer.com>
ikEFTRIIBA, Valkey TopRikE

@Valkey

mailto:pizhenwei@tensorfer.com

=gill) S

7,

h =] o
EE=

Valkey HY'% gE#R 20

Valkey 752 EfEFAERLRAEIRES, 7% Intel Skylake F& LR TCP M, 1KB X/MRIKVIZRT, A&
K29 160K QPS . 1 Master M1Z1 Replica EREE N iE—ERERF R IR = TRIMERERI:

Primary + %Replicati IR A L7

o [BE2 HURERYIEIR [A)
o WimH= TREFLERR

Replica0 ReplicaN

Valkey FY#4 =

Children Self
.67%
.56%
. 18%
.61%
.56%
.30%
.91%
7%
.13%
.68%
. 45%
.42%
.39%
.26%

7.

.56% redis-server

67% redis-server

.78% redis-server
.61% redis-server
.56% redis-server
.30% redis-server
.91% redis-server
.17% redis-server
.73% redis-server
.68% redis-server
.45% redis-server
.42% redis-server
.39% redis-server

.26% redis-server

Command

Bk kit

Shared Object
[ip_tables]
[xt_tcpudp]

Lkernel.
[kernel.
[kernel.
[kernel.
Lkernel.
[kernel.
[kernel.

[kernel

[kernel.
[kernel.
[kernel.

[kernel.

vmlinux]
vmlinux]
vmlinux]
vmlinux]
vmlinux]
vmlinux]

vimlinux]

.vimlinux]

vimlinux]
vmlinux]
vimlinux]

vimlinux]

Symbol

[k]
[k]
[k]
[k]
[k]
[k]
[k]
[k]
[k]
[k]
[k]
[k]
[k]
[k]

ipt_do_table
tcp_mt
tcp_sendmsg_locked
_raw_spin_lock
copy_user_generic_unrolled
tcp_recvmsg
sock_poll
sock_rfree
ip_send_check
_raw_spin_lock_bh
__fget
tcp_cleanup_rbuf
tcp_poll

__tcp_transmit_skb

socket/miEIREY

while (ret = read(sockfd, buf, sizeof(buf)) > 0) {
handle_input(buf, ret);

}

* Msockfd/iREXRYEHE I K AI K2
o BIRHRSCRNRIEREIEPEIN
« mIEREE R

RDMAZRIEIREY

ctx->buf = memalign(page_size, size); /* {eFiERIE—EKENAF */
ctx->mr=ibv_reg_mr(ctx->pd, ctx->buf, size, access_flags); /* FRIBHIRTF A EFE(HF R */
struct ibv_sge list ={
.addr = (uintptr_t) ctx->buf, .length = ctx->size, .lkey = ctx->mr->lkey
I
struct ibv_recv_wr wr ={
wr_id=PINGPONG_RECV_WRID,
.sg_list =&list,
.num_sge=1,
I8
ret =ibv_post_recv(ctx->qp, &wr, &bad_wr); /* BRI -EiZ R EIF ER R ES */

s EEIRFIMBRENNIFLESE
o IRXEUEAR %Ecpu%ﬁ%%ﬁ
« RDMARIERELE

S{HIRhEEY
. TCP

event.events=EPOLLIN | EPOLLOUT;
epoll_ctl(epfd, EPOLL_CTL_ADD, fd, &event);

* RDMA
ibv_post_recv(qp, &wr, &bad_wr);
ibv_post_send(qgp, &send_wr, &bad_wr);

ibv_poll_cq(cq, 1, &wc);
switch (wc.opcode) {
case IBV_WC_RECV.: ...
case IBV_WC_RECV_RDMA_WITH_IMM: ...
case IBV_WC_SEND: ---
RDMA 4mi2:% 8 POLLOUT 4, FEEMIMNRAL% write_handler !

RDMA --- EPOLLIN/EPOLLOUT {4154

W N e

~No bk .

EPOLLIN

ibv_comp_channel BT # EPOLLIN SE44-nafE2, H4ME CQ H4,

#1 Remote Side 88 RDMAWRITE WITH IMM 3Z#e83E, W37 BN 4 CQ 4
M EPOLLIN 2MEREFEH, ATUER “WEITEHIE B8,

EPOLLOUT

ibv_comp_channel ##/ EPOLLOUT 4 MEEE,

£ RDMA E#ZRap, FR%EREFMEFTER Write Handler fE9 pending data .
Valkey 7EFANEHFFEIFFT, =i IE pendingdata,

7£ RDMA IRaph M EBRRE Y pending data , =1 & IXEIR.

431/ O IRELFMR

typedef struct ConnectionType {
int (*listen)(connListener *listener);
connection *(*conn_create)(void);
connection *(*conn_create_accepted)(int fd, void *priv);
void (*shutdown)(struct connection *conn);
void (*close)(struct connection *conn);
int (*accept)(struct connection *conn, ConnectionCallbackFunc accept_handler);

int (*read)(struct connection *conn, void *buf, size_t buf_len);

int (*set_read_handler)(struct connection *conn, ConnectionCallbackFunc handler);
int (*has_pending_data)(void);

int (*process_pending_data)(void);

} ConnectionType;

R EHIMLE1/0 1EEIZFTCP. Unix Socket. TLS (AIiEEmoduleZ®i¥) FMRDMA (RIiEmodulefRiF)

Valkey Over RDMAMY 11T

RDMATERILEGE AN T HY|R] 2R

Hello World BYHMYIRX
*3\r\nS3\r\nSET\r\nS5\r\nHello\r\nS$5\r\nWorld\r\n

o FENBLSHEERRNKE, 40 PING ssKEIE, (B2 SETKEY VALUE 85 AJ K AJFE,
* 1T GETKEY ap<, 1RXMEFNER[EIRY VALUE BZ D515,
* INFO sp < BEFE—RAZRA, REINKRSCGEEERZSTHEH,

YNEREFE Receive buffer SRIZWCE & :

o ZKRLLIREIE? 5190 GETKEY , FTiAFUMENRHR[EIR VALUE KE, RFEE RDMAZETHHER
B B RAE A PR,

o %/ Receive buffer LbIREGIENE? 190 INFO S92 RIBESIREIZ M EUIEHER, COMMAND &< H]
BEIR BB MR B

o WREA— Receive buffer IZWCEE , ERWEIEREREIE ACK , FHiFKETREEIE, nILT
& Receive buffer , B2/ X T E5MY RTT F .

Valkey Over RDMAfESaitNI& 1T
Redis/Valkey Over RDMA &5t E{A £ 53Rk 2 EB 50 :

e Control-Plane
FREEXRNRFHEIEE (KEE) , BT “THES” o A IBV_WR_SEND #{E.

e Data-Plane
{#/H IBV._WR_RDMA_WRITE (®]3%) #11BV_WR_RDMA_WRITE_WITH_IMM (@A%) 3l 2%

HEo

Valkey Over RDMAZHIH B

GetServerFeature : B imH T IREVRS IG5,
SetClientFeature : EFIREFIKERIXEF (RJBIHEVFENFE) o
CommandFoo : RFAZHFHAERS,
GetServerFeature 1 SetClientFeature RIFERKZIFE LZRITHEENY B, Fla@IFFEHE
FeatureFoo JRERE Z#F CommandFoo .
Keepalive : EPERIBEIRS, AT %I Remote Side Ak552888 7555,
RegisterXferMemory : JEMEIRERIEF. ZEZFNTESXKHE “RXtransfer buffer “, 3+
Remote Side 3RiHNZE “ TXtransfer buffer”
typedef struct ValkeyRdmaMemory {
uintl6_t opcode;
uint8_t reserved[14];
uint64_t addr;
uint32_t length;
uint32_t key;
} ValkeyRdmaMemory

Valkey Over RDMAEIEZ #t

valkey-client

[@ibv_post_recv]
setup TX buffer

RX is full

[@ibv_post_recv]
setup TX buffer

-- Valkey commands [@QIBV_WR_RDMA_WRITE_WITH_IMM] -->
<- Valkey response [QIBV_WR_RDMA_WRITE_WITH_IMM] ---

<---- Register transfer memory [@IBV_WR_SEND] ------

-- Valkey commands [@QIBV_WR_RDMA_WRITE_WITH_IMM] -->
<- Valkey response [QIBV_WR_RDMA_WRITE_WITH_IMM] ---

valkey-server
setup RX buffer

[@ibv_post_recv]

setup TX buffer

[@ibv_post_recv]

setup TX buffer

RX is full

Valkey Over RDMA WRITE/RDMA WRITE WITH IMM{:1¥

*3\r\n
$3\r\nSET\r\n
S5\r\nHello\r\n
$5\r\nWorld\r\n

RDMAWRITE WITH IMM
RDMAWRITE WITH IMM
RDMAWRITE WITH IMM
RDMAWRITE WITH IMM

)

9) Remote Side $FUs %] 4 @A
11)

11)

e, e,

RDMAWRITE

RDMAWRITE Remote Side UgE! 1 B
RDMAWRITE

RDMAWRITE WITH IMM(35)

Rwritev IR 1EIRHEIFRYIERE!

libvalkey Zero Copyffi ik

int valkeyBufferRead(valkeyContext *c) {
char buf[1024 * 16];
nread = c->funcs->read(c, buf, sizeof(buf));
if (nread >0 && valkeyReaderFeed(c->reader, buf, nread) !=VALKEY_OK) {
}
}

int valkeyBufferRead(valkeyContext *c) {
if (c->funcs->read_zc) {
char *zc_buf;
nread = c->funcs->read_zc(c, &zc_buf);
if (nread >0 && valkeyReaderFeed(c->reader, zc_buf, nread) !=VALKEY_OK) {
}

return c->funcs->read_zc_done(c);

valkey-servertE& (4RI IRE 1L

® Pin hardware interrupt vectors [0, 3] to CPU [0, 3].
e Set CPU affinity for valkey to CPU [4, X].

* Any valkey server uses a random RDMA completion vector [-1].

All valkey servers will not affect each other and will be isolated from kernel

interrupts.
SYS SYS SYS SYS VALKEY VALKEY VALKEY
| | | | | | I
CPUO CPU1 CPU2 CPU3 CPU4 CPU5 e CPUX

I I I I
INTRO INTR1 INTR2 INTR3

valkey-serverZBEfRE ML
* Pin hardware interrupt vectors [0, X] to CPU [0, X].
* Set CPU affinity for valkey [M] to CPU [M].
* Valkey server [M] uses RDMA completion vector [M].
* A single CPU [M] handles hardware interrupts, the RDMA completion vector [M], and the
valkey server [M] within its context only. This avoids overhead and function calls

across multiple CPUs, fully isolating each valkey server from one another.

VALKEY VALKEY VALKEY VALKEY VALKEY VALKEY VALKEY

| | | | | | |
CPUO CPU1 CPU2 CPU3 CPU4 CPU5 ... CPUX

I I I I I I I
INTRO INTR1 INTR2 INTR3 INTR4 INTR5 INTRX

Valkey Over RDMA%EEZRIN

valkey-serverZRIRE ML

- Requests Per Second Latency in us (avg/p95)

TCP RDMA TCP RDMA
PING 214601.48 512794.22 132/191 56/87
SET 161595.27 267881.06 1771279 109/151
GET 179784.97 347789.78 157/215 83/111

* BRS3Um: ./src/valkey-server --port 6379 --rdma-bind HOST --rdma-port 6379 --loglevel verbose --protected-mode no --
server_cpulist 12 --bio_cpulist 3 --aof_rewrite_cpulist 13 --bgsave_cpulist 13 --appendonly no

o BPus: ./src/valkey-benchmark -h HOST -p 6379 -¢ 30 -n 10000000 --threads 4 -d 1024 -r 10000000 -t ping,set,get --rdma

o RXEEH: Intel(R) Xeon(R) Platinum 8260/Mellanox ConnectX-5

o MK t4E: Debian GNU/Linux 9, Linux-5.4

Valkey Over RDMAER K EEE

Valkey Over RDMAR KR

» Valkey-server
o BT FFZero Copy, H—TIRFAIERE
o RDMA Buffers& BiER A/

* Valkey® Fif
o VALKEY-GLIDEZ#%ERDMA, IFEZERust RDMAGR D E A XiFE R AHES

« YRZHF
o ValkeyE itz #F McacheZFAlIZ=

Thank You

R #xfE <pizhenwei@tensorfer.com>
skEETLIIB A, Valkey TopTRik&

mailto:pizhenwei@tensorfer.com

