
Valkey Dual Channel Replication

binbinzhu(朱彬彬) | 2025/12/13

腾讯云研发，Valkey TSC Member

Background The Horsehead Nebula and its surroundings. The reflection nebula NGC 2023 in the bottom left corner. / Stephanh / License: CC BY 4.0

• 2021 - 2024 Redis committer

• 2024 - now Valkey TSC member

• Software engineer at Tencent Cloud

• Github: github.com/enjoy-binbin

• Email: binloveplay1314@qq.com

• https://github.com/enjoy-binbin/enjoy-binbin/tree/main/2025-12-13-

Valkey_Keyspace_2025_Beijing

About me

• Introducing replication

• Full sync && Psync

• Replication backlog

• Replica client output buffer

• Replication memory usage

• Replication memory issue

• Dual channel replication

• Make valkey great together

Agenda

Dual channel replication overview - 1

Dual channel replication overview - 2

Dual channel replication overview - 3

Dual channel replication #60 - https://github.com/valkey-io/valkey/pull/60

Replication Basic

https://valkey.io/topics/replication/

Replication Key Points

• 主从复制是异步的

• 副本与主服务器之间会异步确认复制偏移量

• 主从复制在主节点侧是非阻塞的

• 主节点不会等待副本节点完成同步

• 主从复制在副本节点侧是可能阻塞的

• 副本节点视角里主节点客户端和普通客户端没太多区别

• 主节点可以拥有任意数量的副本节点

• 主节点视角里副本节点客户端和普通客户端没太多区别

• 通常副本节点是只读的

• 标准版模式下可配置可写副本

• 在标准版模式下，副本也可以是别的副本的主节点

Need for Replication

• 高可用

• 主节点宕机时有副本节点顶上恢复服务

• 扩展实例的读性能

• 读写分离将读请求打到副本节点上

• 提高数据安全性

• 主节点宕机时有副本节点顶上恢复数据

• 另一种方式的持久化

• 主节点不配置持久化，副本节点配置持久化

Type of Replication

• full sync (full synchronization)

• 全量同步

• psync (partial resynchronizations)

• 部分重新同步 / 增量同步

Full sync

• full sync (full synchronization / full resynchronization)

• 顾名思义，就是将主节点上的全部数据同步给副本节点

• full sync 是怎么在不影响客户端访问下实现的？

• fork 子进程生成数据快照

• replica client output buffer 传输增量变更

• 怎么传输 RDB 快照？

• 有盘复制：子进程生成 RDB 文件，主进程发送 RDB 文件给副本节点

• 无盘复制（< 6.0）：子进程边生成 RDB 快照边将内容发送给副本节点

• 无盘复制（>= 6.0）：子进程边生成 RDB 快照边将内容通过匿名管道发送给主进程，主进程边

接收边将内容发送给副本节点

• 什么情况下会发生 full sync？

• 添加一个新副本

• 现有副本重连后没办法做 psync

Psync
• psync (partial sync / partial resynchronizations)

• 副本在断连重连时，会尝试使用复制偏移量信息以进行部分全同步，以避免全量同步

• 主节点在副本重连后，会尝试使用复制积压缓冲区传输副本缺失的数据，以避免全量同步

• Replication backlog

• 复制积压缓冲区，固定大小，缓存追踪最近的增量更新

• Replication offset

• 复制偏移量，逻辑下标对应每一个字节。复制偏移量和复制 ID 是密切相关的。

• Replication ID

• 复制 ID，用来标识复制历史

• Replica client output buffer

• 副本客户端输出缓冲区，传输变更

Putting it together - 1

Putting it together - 2

Putting it together - 3

Putting it together - 4

Putting it together - 5

Replication backlog and replicas use one global shared replication buffer #9166

https://github.com/redis/redis/pull/9166

Replica client output buffer

• Valkey 是内存数据库

• 所有数据都是存储在内存上

• 从内存里读数据很快

• 往网络里写数据很慢

• 需要能处理变长响应

• 客户端输出缓冲区：

• 要发送给客户端的数据会先写入到客户端对应的输出缓冲区中

• 断连慢速客户端

• client-output-buffer-limit normal <hard limit> <soft limit> <soft seconds>

• 副本客户端输出缓冲区：

• 副本在主节点视角里也是一个客户端，主节点通过网络向副本客户端写入数据

• 断连慢速副本客户端

• client-output-buffer-limit replica <hard limit> <soft limit> <soft seconds>

Replication Backlog - 1
• replication backlog

• 复制积压缓冲区

• repl_backlog_size

• 复制积压缓冲区可缓存的字节大小，通过配置项 repl-backlog-size 设置

• master_repl_offset

• 主节点的复制偏移量，从 0 开始，主节点写入的每一个字节，都会响应增加这个复制偏移量

• repl_backlog_first_byte_offset

• 复制积压缓冲区里第一个字节所对应的主节点复制偏移量。它从 1 开始，直到 backlog 被填满，当

在 backlog 里产生覆盖写时，它的值才会开始增加

• repl_backlog_histlen

• 当前复制积压缓冲区的积累的数据字节大小，或者就复制积压缓冲区里实际的/有效的数据长度

• 有效数据始终位于第一个字节偏移量和主节点复制偏移量之间

Replication Backlog - 2

Replication Backlog - 3

Replication Backlog - 4

Replication Backlog - 5

Replication Backlog - 6

Replication Backlog - 7

Replication Backlog - 8

Replication Backlog - 9

Replication Backlog - 10

replicaof host port

Full sync

Disconnect

Psync

How does psync work? - 1

How does psync work? - 2

How does psync work? - 3

How does psync work? - 4

How does psync work? - 5

How does psync work? - 6

Configuration Items

• repl-backlog-size <size>

• >= Valkey 8.0 default is 10mb

• < Valkey 8.0 default is 1mb

• client-output-buffer-limit <class> <hard limit> <soft limit> <soft seconds>

• client-output-buffer-limit replica 256mb 64mb 60

Monitoring items

• role

• https://valkey.io/commands/role/

• info replication

• https://valkey.io/commands/info/

role command

info command - primary side

info command - replica side

Replication memory usage - 1

内存是否统计进 used_memory？

在统计进 used_memory 的情况下，

是否会参与 maxmemory 计算？

Replication memory usage - 2

• Replication Backlog（< 7.0）

• 是一个提前分配的环形缓冲区

• 被所有副本共享

• 会统计进 used_memory，会参与 maxmemory 计算

• info field: mem_replication_backlog

• Replica Client Output Buffer（< 7.0）

• 每个副本都会有自己的客户端输出缓冲区

• 有 hard limit 和 soft limit 限制慢副本连接输出缓冲区的内存占用

• 会统计进 used_memory，但不会参与 maxmemory 计算

• info field: mem_clients_slaves

• info field: mem_not_counted_for_evict

• Global Replication Buffer（>= 7.0）

• 复制积压缓冲区和所有副本客户端输出缓冲区，共享同一个全局复制缓冲区

• info field: mem_total_replication_buffers

Replication issues

• 副本落后太多无法 psync

• 副本节点落后太久，由于缺少复制积压数据，无法进行 psync 只能 full sync

• 慢副本因 COB 限制被断连

• 慢副本在线期间消费太慢，因为 client output buffer limit 限制被主节点断连

• 副本主从复制反复 full sync

• 副本 full sync 期间因为 client output buffer limit 限制失败，反复做 full sync

• 不限制 replica COB

• 不限制 replica client output buffer limit 对主节点内存的影响

副本落后太多无法 psync - 副本节点日志

副本落后太多无法 psync - 主节点日志

慢副本因 COB 限制被断连 - 主节点日志

慢副本因 COB 限制被断连 - 副本节点日志

副本主从复制反复 full sync - 主节点视角

副本主从复制反复 full sync - 副本节点视角

不限制 replica COB - 主节点内存占用

Dual channel replication - 1
• 问题：

• 主节点全量同步期间副本客户端输出缓冲区内存占用多

• 副本客户端输出缓冲区不容易计算出准确的限制值

• 如果一直调大限制，则节点机器内存存在 OOM 风险

• 如果一直不调整，则节点主从同步全量同步将一直无法完成，也可能存在单主风险

• 反复的全量同步对主节点影响很大，fork / copy on write / 占用主线程 CPU 等

• 需要提高全量同步的成功率 / 可靠性

Dual channel replication #60 - https://github.com/valkey-io/valkey/pull/60

Dual channel replication - 2

Dual channel replication - 3

Dual channel replication - 4

Dual channel replication - 5

Dual channel replication - 6

Dual channel replication - 7

• 无盘主从复制中针对全量同步的优化

• 核心思路：

• 在全量同步期间，副本节点会和主节点再建立一条 RDB 连接，主节点会在两条连接上并行发送

RDB 快照和副本客户端输出缓冲区里的命令流数据，副本节点会将命令流数据缓存在本地内存，

等 RDB 快照加载完后回放命令流。

Dual channel replication - full sync + psync

• 全量同步 full sync for rdb channel：

• 全量也就是 RDB 快照部分，当副本节点主从握手完收到主节点 +DUALCHANNELSYNC 响应后，

会创建一条新的连接，叫做 rdb channel。

• 副本节点会利用 rdb channel 向主节点发送 sync 命令请求全量同步。

• 主节点在收到 rdb channel 的 sync 后，在 fork 之前会将当前的复制偏移量通过 rdb channel 发送给

副本节点，即会将 snapshot end-offset 发送给副本节点。

• 增量同步 psync for main channel：

• 副本节点收到 snapshot end-offset 后，在 main channel 里利用 end-offset 发送 psync 命令请求增

量同步，请求对应 offset 之后的增量数据。

• 副本节点会将 psync 后的增量命令流数据缓存到本地内存中。

• 当副本节点 rdb channel 完成 RDB 快照的加载后，就会将本地内存中的增量命令加载到 DB 中。

Dual channel replication - benefits - 1

• 减少主节点内存压力：

• 通过将 COB 从主节点转移到副本节点，这会减轻主节点的内存压力。

• 在 full sync 期间，因为 fork 的调用，主节点同时也在承受 COW 带来的内存上涨压力，所以如

果能够减少主节点内存使用，对主节点也会有好处，不然类似原本主节点需要同时承受 COW

和 COB 的开销，两个加一起内存占用非常不好限制和运维，现在主节点只需要承受 COW 的开

销，而尽量少的承受 COB 的开销。

• 副本节点本身在 full sync 期间不怎么会被 COW 影响，所以对比主节点能有较多的内存资源用

于承受 COB。

• 减少主节点主线程的 CPU 负载：

• 通过为 RDB 快照传输建立专有连接，子进程可以直接通过 RDB 连接进行数据传输，从而省去

了主进程中转数据的过程，让主线程可以专注处理客户端请求。

• 在 6.0 版本中为了支持 TLS，在无盘传输中，子进程实际上会先将 RDB 内容通过管道写给父进

程，父进程读出来后发送给副本节点。父子进程需要频繁通过管道进行通信。

Dual channel replication - benefits - 2

• 提高 full sync 成功率：

• 原本为了避免 replica COB 限制导致 full sync 失败，我们通常需要调整主节点的 COB 限制，但

是这个值没有很好的计算方式去设置，并且主节点侧提高 COB 限制可能会耗尽主节点侧内存，

通过 dual channel，实际上可以理解为是将 COB 限制调大了，管控会更加灵活，相当于副本节

点先承担一部分 COB，然后主节点再承担后面部分的 COB，更大的 COB 意味着更高的全量同

步成功率。

• 提高 full sync 的效率：

• 在之前需要等副本节点加载完 RDB 快照后才能发送 replication buffer，是串行的。积累的

replication buffer 可能会需要一段时间才能传输完成。

• 现在是并行发送，副本节点加载完 RDB 快照后可直接重放本地内存，全量同步期间的增量命令

传输时间将会缩短，进而缩短整体同步时间。

Dual channel replication - benefits - 3

• 增强副本节点数据一致性

• 因为有提升 full sync 的效率，某种程度上能减少副本节点提供陈旧数据的窗口时间。副本在上

线后，从开始消费 replication buffer 到真正消费完之前，这中间会有一段时间窗口，主节点侧

可能积累了很多数据，这些数据变更需要经过一定时间才能真正传播到副本节点。

• 快照传输和主线程流量负载不关联

• 当有了 rdb channel 后，子进程可以直接发数据，即使父进程主线程遇到一些慢查询命令，或者

命令复杂压力大，RDB 的流式传输也不会受到影响。子进程无需和负载过重的主进程共享 CPU

资源即可往副本传输数据，不仅可以提升客户端响应速度，还可以缩短同步时间。

Dual channel replication - Configurations

• client-output-buffer-limit replica 256mb 64mb 60

• repl-diskless-sync yes

• dual-channel-replication-enabled no

Dual channel replication - More? - 1

• 副本节点将 local buffer 落盘

• 我们可以看到，dual channel 只是将内存从主节点侧转移到了副本节点侧，实际上实例使用的

总内存是没有变化的，并没有完全消除内存，只是将内存开销从重要的主节点，转移到了不那

么重要的副本节点上。

• 这种可以做的优化是类似在副本节点那边，将 replication stream 的内容给落盘，之后加载完

RDB 后再从硬盘加载 replication stream，从而可以继续扩大 COB。

• 多副本同时全量同步，总内存增加

• 7.0 引入了全局复制共享缓冲区，无论有多少个副本，主节点只需要存储一份数据到共享缓冲区

中（我们允许多个副本同时全量同步），如果使用 dual channel，这意味着共享缓冲区作用失

效了部分，复制流数据在多个副本上都进行了缓存，实例总内存使用情况是在增加的。

• 这种可以做的优化可能是类似，当主节点判断出有多个副本需要同时做全量同步的时候，主节

点那边不走 dual channel 而是走回原本的 single channel replication。

Dual channel replication - More? - 2

• 副本边加载 local buffer 边继续缓存

• 目前 valkey 副本节点在消费 local buffer 的时候，它会将 read handler 给置空，停止继续从主

节点那边读取数据，实际上我们其实可以继续读取，这样能更好的将主节点那边的内容转移过

来。因为在大流量场景下，local buffer 可能会堆积的很大，要完全消费完可能需要一段时间，

在这段时间主节点那边如果 COB 达到限制一样会断连，所以我们可以尽量继续转移，即边加载

local buffer 边继续缓存。

• 单独的副本 local buffer 配置项

• 前面我们提到了副本 local buffer 的大小是继承自 replica client-output-buffer-limit 配置项的，在

某些运维场景，为副本单独设置一个新的 local buffer 配置项可能会更灵活。因为副本节点可能

会在任意时刻被提升为主节点，和 client-output-buffer-limit 共用一个配置项可能会没那么灵活。

Make Valkey Great Together

• No CLA, only have DCO

• https://valkey.io/

• https://github.com/valkey-io/valkey

• https://github.com/valkey-io/valkey-doc

• https://github.com/valkey-io/valkey/blob/unstable/CONTRIBUTING.md

https://github.com/valkey-io/valkey/releases/tag/9.0.0-rc1

Thank you! Enjoy Valkey Keyspace!

binbinzhu(朱彬彬) | 2025/12/13

腾讯云研发，Valkey TSC Member

Background The Horsehead Nebula and its surroundings. The reflection nebula NGC 2023 in the bottom left corner. / Stephanh / License: CC BY 4.0

