
Valkey 9.0: 让集群的水平伸缩更稳更快

Atomic Slot Migration

宋平凡 | 2025/12/13
腾讯云研发

Background The Horsehead Nebula and its surroundings. The reflection nebula NGC 2023 in the bottom left corner. / Stephanh / License: CC BY 4.0

01

基于hash slot分片的Valkey集群

如何确定一个key所属的hash slot

slot = CRC16(key) % 16384

https://valkey.io/commands/cluster-

keyslot/

如何查看集群的拓扑信息

cluster

nodes
cluster slots

cluster shards

https://valkey.io/commands/cluster-nodes/

水平伸缩这个事为什么很重要？

– 所有业务都有生命周期，上升期需要水平扩容，下降期需要水平缩容。

– 部分业务正常运营中也有节假日高峰和活动高峰，高峰前需要扩容，高峰后需要缩容。

业务数据量和流量的变化要求数据库有应对能力

– Valkey的命令执行是单线程模型，节点主线程打满CPU，无法通过加核增加处理能力。

Valkey单点处理能力缺乏纵向扩展性

– Valkey的内存过大导致fork的阻塞时间过长，几十GB的fork就可能阻塞几百毫秒。

– Valkey的内存过大导致全量同步耗时过长，增量请求积压过多容易超出output buffer限制。

Valkey单点内存过大容易引发系列问题

从三分片到五分片？

水平伸缩 slot迁移

slot迁移方案需要解决的核心问题

slot数据如何搬迁？

slot归属权如何转移？

迁移中业务请求如何处理？

迁移 = 搬迁 + 转移
(数据) (归属权)

02

老版本slot迁移方案的核心思路

MIGRATE命令

CLUSTER SETSLOT命令

ASK重定向

slot数据如何搬迁？

• 客户端逐key搬迁

slot归属权如何转移？

• 客户端直接设置

迁移中业务请求如何处理？

• 不确定key在哪边，需要分别尝试

老版本slot迁移方案的流程

1. 在目标节点标记slot的 IMPORTING（导入）状态。

2. 在源节点标记slot的 MIGRATING（导出）状态。

1. 在源节点获取一批属于该slot的key 。

2. 在源节点通过 MIGRATE 命令将这一批key同步搬到目标节点。

3. 循环执行上述步骤，直至该slot中所有都搬到了目标节点。

1. 清理目标节点的 IMPORTING 状态，并转移slot归属权到此节点。

2. 清理源节点的 MIGRATING 状态，并更新slot归属权到目标节点。

3. [可选]向集群中其它节点更新slot归属权。

老版本方案迁移中对业务请求的处理

1. 客户端优先将请求发送到源节点，源节点有这个key就直接

返回；

2. 源节点没有这个key，且对应slot处于MIGRATING状态，返

回ASK重定向错误；

3. 客户端提取目标节点地址，先发送ASKING命令，标记此连

接处于特殊状态，再将原始请求发给目标节点；

4. 目标节点检测到对应slot处于IMPORTING状态，且连接处于

特殊状态，临时允许处理此请求，并返回结果。

老版本方案面临的挑战 - 业务影响

• 迁移中，源节点和目标节点都只

有一部分key

• 多key命令要求所有访问的key都

在同一节点

– 部分key已搬走，反复重试直到所

有key到目标节点，带来时延抖动

– 部分key不存在，持续报错

• 搬key的命令占用主线程执行时间，

用户请求QPS受损

• ASK重定向导致用户请求网络多一

跳，请求时延增加

根因：slot数据搬迁不是原子的 根因：单线程 + ASK重定向根因：MIGRATE是同步阻塞命令

• 搬迁时，源节点的序列化/网络传

输/目标节点的反序列化，每一步

耗时都和key的大小正相关

• Valkey支持多种复杂结构的key

– 几十万上百万的元素，搬迁带来严

重的时延抖动/超时报错

– 几百万上千万的元素，搬迁导致节

点被判死，集群不可用

老版本方案面临的挑战 - 健壮性

• 发起后，源节点和目标节点都只

有一部分key

• 中断后，继续或回滚都很困难

– 流程继续，源 -> 目的

– 流程回滚，目的 -> 源

• 源端主节点宕，从节点提主，不

知道slot在迁移中

• 源端对于已搬到目标节点的key当

不存在处理，引起数据一致性问

题

• 标记状态，若是先源后目标，反

复ASK和MOVED重定向

• 清理状态，若是先源后目标，两

边来回MOVED重定向

根因：数据搬迁不是原子的 根因：迁移状态未持久化 根因：迁移状态设置不是原子的

老版本方案面临的挑战 - 迁移速度

迁移速度过慢

根因：客户端驱动 + 单线程模型

每一批key的搬迁，都需要客户端和源节点交互两次，

增加额外2个RTT。

源节点主线程既要执行业务请求，又要执行搬迁命令，

互相影响。

03

Valkey9.0的新方案：Atomic Slot Migration

https://github.com/valkey-io/valkey/pull/1949

Atomic Slot Migration的核心思路

slot数据如何搬迁？

• 借鉴主备Replication，但需限定slot

slot归属权如何转移？

• 借鉴Manual Failover，但需限定slot

迁移中业务请求如何处理？

• 搬迁中源节点不删数据，直接访问

Slot Replication

Slot Failover

源节点正常处理

Migration via Replication and Failover

Atomic Slot Migration: Slot Replication

Atomic Slot Migration: Slot Failover

新老迁移方案的对比：对业务请求的影响

Legacy Slot Migration(老方案)

迁移大key会阻塞主线程

多key请求会报错

需ASK重定向，时延上升

源节点在主线程dump，挤占业

务请求的CPU使用

Atomic Slot Migration(新方案)

迁移大key不阻塞主线程

多key请求源节点正常处理

无需重定向，时延不变

源节点在子进程传快照，不会

影响主进程处理业务请求

新老迁移方案的对比：健壮性与易用性

Legacy Slot Migration(老方案)

slot迁移状态可能丢失

源和目标的迁移状态可能乱序

流程中断/回滚困难

客户端驱动，需持续交互

Atomic Slot Migration(新方案)

没有迁移状态丢失问题

没有迁移状态乱序问题

流程中断/回滚简单

源节点驱动，一键发起

新老迁移方案的对比：迁移速度

注：此处的测试数据引用自valkey官网的博客，https://valkey.io/blog/atomic-slot-migration/

测试场景：

1. 两个集群都使用基于Valkey9.0.0编译的同一个二进制搭建，且部署在同一个region；

2. 发起迁移的客户端单独部署在同region的另一台机器上；

3. 老方案使用valkey-cli --cluster rebalance 命令完成迁移，参数采用默认值；

4. 发起迁移前，两个都提前填充了40GB数据(string类型，长度16KB)；

5. Heavy Load场景的背景压力，使用memtier-benchmark工具，set/get 1:10。

如何使用Atomic Slot Migration

CLUSTER MIGRATESLOTS SLOTSRANGE start-slot end-slot NODE node-id

• 给源节点发送，向目标节点发起指定slot范围的迁移任务。

CLUSTER GETSLOTMIGRATIONS

• 迁移任务运行期间，循环给源节点发送，获取迁移任务的运行状态，一直到任务结束或失败。

CLUSTER CANCELSLOTMIGRATIONS

• 迁移任务运行期间，在必要情况下，给源节点发送，安全地中断并回滚迁移任务。

Background The Horsehead Nebula and its surroundings. The reflection nebula NGC 2023 in the bottom left corner. / Stephanh / License: CC BY 4.0
Background The Horsehead Nebula and its surroundings. The reflection nebula NGC 2023 in the bottom left corner. / Stephanh / License: CC BY 4.0

THANK YOU!
Q&&A

