


Agenda

• 高可用技术的重要性

• 高可用切换技术演进

• 无感切换技术实现

• SDK的最佳实践



高可用技术的重要性



故障场景的业务稳定性

• Valkey的使用场景：热数据缓存、会话、限流、排行榜、配置缓存。

• 业务特征：高QPS、高并发、在线业务、SLA要求高。

• 高可用技术扮演的角色：切换的快慢与可靠直接决定了业务受损的情况，与业
务稳定性挂钩。



高可用的衡量指标

• RTO：（恢复时间目标）：主从切换要控制在多少秒以内。

• RPO：（数据恢复点目标）：允许丢多少数据。

• 常见设计冲突：切换越快 -> 误判风险越大；减少数据丢失 -> 切换流程越重
。



主动运维场景的业务稳定性

• 主动运维的场景：实例主动切换、小版本升级、故障机器的提前预警下线。

• 主动切换 VS 故障切换的比例：8：2

• 举例：某游戏客户，自己实现客户端，在主动运维切换后由于断连，客户端未
重连导致连接协议错乱，从而读取数据失败，影响游戏页面展示。



高可用切换技术演进



Valkey的两种架构

master

mastermaster
Cluster Busmaster

replica

Standalone
Cluster



高可用架构：Sentinel

优势

master replica

② Promote to master

② ERROR

⑤ New connection

Sentinel

③ get-master-addr-by-name

④ New ip:port

① Master down

…

劣势

1. 官方原生、部署相对简单。
2. 自动故障检测与主从切换。
3. 为客户端提供统一主库发现能力。

1. 只适用于主从。
2. 切换速度较慢。
3. Sentinel集群本身运维门槛高。



高可用架构：Cluster

Valkey Cluster

master

mastermaster
Cluster Bus

replace

X 优势

劣势

1. 原生分片和高可用一体。
2. 自动主从切换，节点角色自管理。
3. 路由表分布式存储，抗单点失败能力强。

1. 大集群下Gossip收敛速度慢。
2. Cluster Bus对网络稳定性要求高，容易误判。
3. 出现问题排查困难，需要在多个节点追踪日志。



高可用架构：Cloud/Built-in Service

CodisCloud Architecture



高可用架构：Cloud Native(K8S)

• 基于 K8S 的 List-Watch 模型，
operator 等能力实现数据库等有
状态服务的高可用。

• https://github.com/apecloud/ku
beblocks

• https://github.com/hyperspike/
valkey-operator

https://github.com/apecloud/kubeblocks
https://github.com/hyperspike/valkey-operator


无感切换技术实现



无感切换的含义

• 无感切换的优势如下：

• 客户业务不会遇到连接断开错误。

• 业务只会遇到短暂的RT上升，不会
出现长时间不可用。

• 降低业务不可用时长90%以上。



集群和Sentinel的优势与问题

master

mastermaster
Cluster Bus

Cluster架构天然支持无感切换，MOVED协议平滑

master
replica

② -READONLY/Role 
changed

⑤ New connection

Sentinel

③ get-master-addr-by-name
④ new ip:port

① Switchover

② switch-master

Sentinel 主动切换，时效慢&不平滑



主从无感切换架构

master replica

IP1 IP2

① Pause write

② Wait sync

③ Promote to master

④ Switch

⑤ Demote to replica

⑥ Client unpause

⑦ return -REDIRECT

1. 对主库执行Pause write

2. 等待主备数据同步

3. 将备库提升为主库

4. 切换访问，新连接将建连到IP2

5. 将IP1变更为replica，挂载到IP2

6. 在IP1执行client unpause

7. 对于之前的写命令返回 REDIRECT IP2 PORT2

8. 客户端重发重连并且重新执行命令。



无感切换：客户端支持

Valkey-Java 如何处理In flight的连接：对于连接池中同时并发
访问的链接，如果某条或者多条同时遇到了-REDIRECT之后，通过一
个二段锁来控制重新初始化连接池的过程：

1.第一层锁使用ReentrantLock的tryLock，当tryLock成功时候才可
以进入候选Renew连接池的可能。

2.第二层锁使用ReentrantReadWriteLock，主要用来控制连接池的
的读写，但加入写锁之后，将会block外部API请求，直到更新完
毕连接池。

• 已经支持主从无感切换的客户端

• ✅ https://github.com/valkey-io/valkey-java

• ✅ https://github.com/valkey-io/valkey-go

• 🚧 https://github.com/valkey-io/valkey-py

• 🚧 https://github.com/valkey-io/valkey-glide

https://github.com/valkey-io/valkey-java
https://github.com/valkey-io/valkey-go
https://github.com/valkey-io/valkey-py
https://github.com/valkey-io/valkey-glide


无感切换：测试效果

测试流程：

1. 程序1不断访问Valkey，记录每次操作的rt，如果遇
到任何异常进行记录，表示本次访问失败。

2. 程序2对Valkey进行10次无感和普通切换，如果是无
感切换，采用pause+redirect切换，如果是普通切换，
则使用禁写+断连接的方式。

普通切换的情况如下：其中蓝色的线表示RT，红色的部分
是遇到Exception的情况。

普通切换

无感切换



SDK最佳实践



Jedis/Valkey-Java在Cluster下的一些坑

• 总体版本建议：使用Jedis 4.x.x或5.x.x 版本，请升级至Jedis最新版本；
使用Jedis 2.x.x或3.x.x版本，请升级至Jedis 3.10.0及以上版本。

• 当集群中初始化的endpoint均失效时候，会导致实例无法成功连接到任一节
点，修复PR：https://github.com/redis/jedis/pull/3370

• 当集群中没有任何访问，但后端节点发生迁移时候，客户端无法感知到新的
路由表，解决方法是打开周期性刷新路由表的机制：
https://github.com/redis/jedis/pull/3596

• 当Jedis访问的DNS地址后端有多个节点时，为了均衡访问，需要升级到
4.1.0及以上，https://github.com/redis/jedis/pull/2722

https://github.com/redis/jedis/pull/3370
https://github.com/redis/jedis/pull/3596
https://github.com/redis/jedis/pull/2722


Thanks & QA


