August 28 KEYSPACE Amsterdam

What's new in Valkey 9.0

Madelyn Olson Valkey Maintainer

Ping Xie Valkey Maintainer Ran Shidlansik Valkey Maintainer

Introducing the Valkey project

Fully compatible with Redis OSS 7.2

Vendor Neutral BSD-3 Licensed

Built by contributors in the open source community

A year in Valkey

Valkey 8.0 Release

- 1M Requests per second (RPS)
 - Dual channel replication
- Enhanced slot migration reliability

A year in Valkey

Valkey 8.0 Release Valkey 8.1 Release

- Reduced memory overhead by 20%
- Vector similarity, Bloom, and JSON modules
 - New command log and metrics

A year in Valkey

Valkey 8.0 Release Valkey 8.1 Release Valkey 9.0 Release Candidate

- Multiple databases in cluster mode
 - Atomic slot migration
 - Expiration on hash field items

Multiple-databases in Cluster mode

Simple Valkey use case

Simple Valkey use case

Extending databases to cluster mode

Extending databases to cluster mode

Extending databases to cluster mode

Summary of clustered databases

- Provides namespaces that can scale horizontally
- Zero-overhead when unused
- More database features coming soon!

Atomic Slot Migration

How Valkey Cluster Works: The Slots

1. A child process is forked to create a snapshot

æy

2. The snapshot begins exporting to the target node

3. The target node receives the first part of the snapshot

4. A new write arrives and is buffered by parent process

5. The target node receives the original full snapshot

Target Node Receiving Data Slot 123 (A, B) æy

6. Snapshot completes, child process exits

Target Node

Receiving Data

Slot 123 (A, B)

æy

7. The parent process begins draining

8. Draining completes and the target is fully synced

æy

9. A final handoff atomically transfers ownership

Hash field expiration

Valkey Hash Objects

Per-field TTL, what is it good for?

The Core Challenges

- Need to track and expire individual fields inside a hash (why?)
 - Expiration cycle efficiency
 - Bounded memory growth
- Cannot impact the complexity of existing Hash objects
 - Most Hash operation are O(1) complex
 - This implies we cannot simply apply sorting on volatile items
- Memory overhead
 - TTL overhead is up to 8 bytes, but tracking will require extra metadata.
- Performance
 - Support similar throughput for workloads adjusting to use hash fields expiration.

Naïve Solution 1: Separate Hashtable

Idea: Maintain parallel hash mapping field → expiry

Pros: Simple to implement

Cons: Wasted active expiration CPU cycles and high expiration staleness

Naïve Solution 2: Trie (Radix Tree)

Idea: Use a radix tree keyed by (hash_key, field) for expiries

Pros: Follows an existing solution. Constant time lookups and modifications.

Cons: High memory overhead (over 54 bytes per volatile hash entry)

Naïve Solution 3: Sorted Structure

Idea: Maintain sorted (expiry, field) list/tree per hash

Pros: Efficient sorted iteration over volatile elements

Cons: O(log n) inserts/deletes, higher CPU cost with frequent updates

Chosen Approach: Coarse Buckets

Idea: Semi-Sorted data structure. Group expirations into fixed time buckets

Buckets are sorted and maintained by a radix tree

Bucket has multiple encodings to support fast access/mutations and memory efficiency

Dynamic buckets interval resolution is adjusted as it grows (to reduce expiration staleness)

Expire fields by processing buckets

Benefits: O(1) lookups and modifications. minimal memory overhead, batch

Ranged resolution Intervals (eg 16 milli – 10 seconds)

Benchmarking - Memory

Hash Item Memory Overhead (Bytes)

Benchmarking

RPS (Requests Per Second) for Hash commands with/without volatile fields

Benchmarking

New HFE Commands Throughput

Benchmarking – Expiration

Active expiration keeps bounded memory footprint

Memory = (Injection Throughput) x (AVG TTL) x (AVG Item memory)

Next Steps

Improved memory efficiency

Support "packed" small hashes for better memory efficiency
Use overloaded hashtables to reduce the memory consumption of
large buckets

Improved performance

Better CPU utilization with use of prefetching and SIMD techniques

Extended functionality

Allow placing TTL on SET object fields.

Just the beginning

What else will be new in Valkey 9?

- Zero-copy responses for large requests (Up to 20% higher throughput)
- Support for Multipath TCP
- Memory prefetching for pipelining commands (Up to 40% higher throughput)
- Stability improvements for large (1000+ node) clusters
- SIMD optimizations for BITCOUNT and hyperloglog commands (up to 200% higher throughput)
- New filtering options for CLIENT LIST command
- New DELIFEQ command to conditionally delete
- By-polygon support for Geospatial indexes
- ... and so much more ...

This could be you!

- Ran Shidlansik @ranshid
- •Binbin @enjoy-binbin
- Jacob Murphy @murphyjacob4
- Madelyn Olson @madolson
- •YueTang-Vanessa @YueTang-Vanessa
- •cxljs @cxljs
- •Sarthak Aggarwal @sarthakaggarwal97
- •amanosme @amanosme
- •Hanxi Zhang @hanxizh9910
- •Seungmin Lee @sungming2
- •uriyage @uriyage
- •Katie Holly @Fusl
- •Nicky-2000 @Nicky-2000
- •Allen Samuels @allenss-amazon
- •yzc-yzc @yzc-yzc
- •zhaozhao.zz @soloestoy
- •asagegeLiu @asagege
- •nitaicaro @nitaicaro
- •Matthew @utdrmac
- •Omkar Mestry @omanges
- •Viktor Söderqvist @zuiderkwast
- •kukey @kukey
- •Harkrishn Patro @hpatro
- •Avi Fenesh @avifenesh
- •Amit Nagler @naglera
- •Josh Soref @isoref
- •youngmore1024 @youngmore1024
- •Rain Valentine @SoftlyRaining
- •skyfirelee @artikell

- •Wen Hui @hwware
- •yulazariy @yulazariy
- •Yakov Gusakov @gusakovy
- •charsyam @charsyam
- •Simon Baatz @gmbnomis
- •Thalia Archibald @thaliaarchi
- •chzhoo @chzhoo
- •xbasel @xbasel
- •Stav Ben-Tov @stav-bentov
- •wuranxx @wuranxx
- •Ayush Sharma @ayush933
- •chx9 @chx9
- •KarthikSubbarao @KarthikSubbarao
- •Hüseyin Açacak @huseyinacacak-janea
- •アンドリー・アンドリ @odaysec
- Ping Xie @PingXie
- •Lipeng Zhu @zhulipeng
- •Linus Unnebäck @LinusU
- •Vitah Lin @vitahlin
- •kronwerk @kronwerk
- •Vadym Khoptynets @poiui
- •muelstefamzn @muelstefamzn
- •zhenwei pi @pizhenwei
- George Padron @DoozkuV
- •Björn Svensson @bjosv
- •aradz44 @aradz44
- •Hiranmoy Das Chowdhury @HiranmoyChowdhury
- Yair Gottdenker @yairgott
- •Roshan Khatri @roshkhatri

- •nesty92 @nesty92
- •carlosfu @carlosfu
- •Arthur Lee @arthurkiller
- •Shai Zarka @zarkash-aws
- Sergey Kolosov @skolosov-snap
- Nathan Scott @natoscott
- •lucasyonge @lucasyonge
- •WelongZuo @WelongZuo
- •Jim Brunner @JimB123
- •jeon1226 @jeon1226
- •Benson-li @li-benson
- •Meinhard Zhou @MeinhardZhou
- •Nikhil Manglore @Nikhil-Manglore
- •Bogdan Petre @bogdanp05
- •eifrah-aws @eifrah-aws
- •Ricardo Dias @rid15372
- •secwall @secwall
- •Anastasia Alexandrova @nastena1606
- •Marek Zoremba @zori-janea
- •VoletiRam @VoletiRam

Thank you!