
What’s new in
Valkey 9.0

Madelyn Olson
Valkey Maintainer

Background The Horsehead Nebula and its surroundings. The reflection nebula NGC 2023 in the bottom left corner. / Stephanh / License: CC BY 4.0

Ping Xie
Valkey Maintainer

Ran Shidlansik
Valkey Maintainer

Introducing the Valkey project

Vendor Neutral
BSD-3 Licensed

Fully compatible
with Redis OSS 7.2

Built by contributors in the
open source community

A year in Valkey

Valkey 8.0
Release

• 1M Requests per second (RPS)
• Dual channel replication

• Enhanced slot migration reliability

A year in Valkey

Valkey 8.0
Release

Valkey 8.1
Release

• Reduced memory overhead by 20%
• Vector similarity, Bloom, and JSON modules

• New command log and metrics

A year in Valkey

Valkey 8.0
Release

Valkey 9.0
Release Candidate

Valkey 8.1
Release

• Multiple databases in cluster mode
• Atomic slot migration

• Expiration on hash field items

Multiple-databases in Cluster mode

Simple Valkey use case

DB 0

GET TIMELINE:1234

Simple Valkey use case

DB 0

SET TIMELINE:1234 “Timeline” EX 1000

DB 0

Using Valkey Databases as namespaces

GET TIMELINE:1234

GET TIMELINE:2345

DB 0

Using Valkey Databases as namespaces

GET server2:TIMELINE:1234

GET server1:TIMELINE:2345

Using Valkey Databases as namespaces

DB 0

DB 1

GET TIMELINE:1234

GET TIMELINE:1234

Using Valkey Databases as namespaces

DB 0

DB 1

GET info keyspace

FLUSHDB

Extending databases to cluster mode

Slot 0-5461 Slot 5462 - 10922 Slot 10923 - 16383

DB 0 DB 0 DB 0

Extending databases to cluster mode

Slot 0-5461 Slot 5462 - 10922 Slot 10923 - 16383

DB 0 DB 0 DB 0

DB 1 DB 1 DB 1

Extending databases to cluster mode

Slot 0-5461

DB 0

DB 1

GET TIMELINE:1234

GET TIMELINE:1234

Summary of clustered databases

• Provides namespaces that can scale horizontally
• Zero-overhead when unused
• More database features coming soon!

Atomic Slot Migration

How Valkey Cluster Works: The Slots

Problem 1 - Suboptimal Client Redirects

Problem 1 - Suboptimal Client Redirects

Problem 1 - Suboptimal Client Redirects

Problem 1 - Suboptimal Client Redirects

Problem 1 - Suboptimal Client Redirects

Problem 2 - Broken Multi-Key Operations

Problem 2 - Broken Multi-Key Operations

Problem 2 - Broken Multi-Key Operations

Problem 2 - Broken Multi-Key Operations

Problem 3 - Large Key Handling

Problem 3 - Large Key Handling

Problem 3 - Large Key Handling

Problem 3 - Large Key Handling

Problem 3 - Large Key Handling

1. A child process is forked to create a snapshot

2. The snapshot begins exporting to the target node

3. The target node receives the first part of the snapshot

4. A new write arrives and is buffered by parent process

5. The target node receives the original full snapshot

6. Snapshot completes, child process exits

7. The parent process begins draining

8. Draining completes and the target is fully synced

9. A final handoff atomically transfers ownership

Hash field expiration

Valkey Hash Objects

Key1
(String)
Key2 (Set)

Key3
(Hash)

“valkey”

(“this” , “Is” , “A” , “Set”)

{ “foo”:”bar” , “val”:”key” , “me”:”myself” }

Keys Values

Lazy Expiration

Active Expiration

Per-field TTL, what is it good for ?

IoT / telemetry
Different sensors expire at

different times

Session
management

 Store multiple sessions in
one hash with separate

expiries.

Hot/Cold data
management

 Remove long un-accessed
hash entries

Feature flags / tokens
Expire specific configs

without touching
others

Log Management
Periodically Expire old

logs

The Core Challenges

• Need to track and expire individual fields inside a hash (why?)
• Expiration cycle efficiency
• Bounded memory growth

• Cannot impact the complexity of existing Hash objects
• Most Hash operation are O(1) complex
• This implies we cannot simply apply sorting on volatile items

• Memory overhead
• TTL overhead is up to 8 bytes, but tracking will require extra metadata.

• Performance
• Support similar throughput for workloads adjusting to use hash fields

expiration.

Naïve Solution 1: Separate Hashtable

Idea: Maintain parallel hash mapping field → expiry
Pros: Simple to implement
Cons: Wasted active expiration CPU cycles and high expiration staleness

HASH object main map

Items with
TTL

HASH object secondary volatile items map

Naïve Solution 2: Trie (Radix Tree)

Idea: Use a radix tree keyed by (hash_key, field) for expiries
Pros: Follows an existing solution. Constant time lookups and modifications.
Cons: High memory overhead (over 54 bytes per volatile hash entry)

8-byte timeout (TTL)

RAX

0x00 0x00 0x01 0x8c 0x77 0xb5 0xa4 0x03 0x7f 0xfd 0xfa 0xd4 0xc9 0x20 0x00 0x00

8-byte memory address
(pointer)

Naïve Solution 3: Sorted Structure

Idea: Maintain sorted (expiry, field) list/tree per hash
Pros: Efficient sorted iteration over volatile elements
Cons: O(log n) inserts/deletes, higher CPU cost with frequent updates

Chosen Approach: Coarse Buckets
Idea: Semi-Sorted data structure. Group expirations into fixed time buckets

Buckets are sorted and maintained by a radix tree
Bucket has multiple encodings to support fast access/mutations and

memory efficiency
Dynamic buckets interval resolution is adjusted as it grows (to reduce

expiration staleness)
Expire fields by processing buckets
Benefits: O(1) lookups and modifications. minimal memory overhead, batch

expiry

Timer buckets
(Radix Tree)

Ranged resolution Intervals (eg 16 milli – 10 seconds)

Benchmarking - Memory

0

5

10

15

20

25

30

Large Hash (10M fields) Multiple medium size Hashes (1K
fields)

Multiple small size Hashes (100
fields)

Hash Item Memory Overhead (Bytes)

Clustered Scattered

Next Steps

Improved memory efficiency
Support “packed” small hashes for better memory efficiency
Use overloaded hashtables to reduce the memory consumption of

large buckets

Improved performance
Better CPU utilization with use of prefetching and SIMD

techniques

Extended functionality
Allow placing TTL on SET object fields.

Just the beginning

What else will be new in Valkey 9?

• Zero-copy responses for large requests (Up to 20% higher throughput)
• Support for Multipath TCP
• Memory prefetching for pipelining commands (Up to 40% higher

throughput)
• Stability improvements for large (1000+ node) clusters
• SIMD optimizations for BITCOUNT and hyperloglog commands (up to 200%

higher throughput)
• New filtering options for CLIENT LIST command
• New DELIFEQ command to conditionally delete
• By-polygon support for Geospatial indexes
• … and so much more …

This could be you!
•Ran Shidlansik @ranshid
•Binbin @enjoy-binbin
•Jacob Murphy @murphyjacob4
•Madelyn Olson @madolson
•YueTang-Vanessa @YueTang-Vanessa
•cxljs @cxljs
•Sarthak Aggarwal @sarthakaggarwal97
•amanosme @amanosme
•Hanxi Zhang @hanxizh9910
•Seungmin Lee @sungming2
•uriyage @uriyage
•Katie Holly @Fusl
•Nicky-2000 @Nicky-2000
•Allen Samuels @allenss-amazon
•yzc-yzc @yzc-yzc
•zhaozhao.zz @soloestoy
•asagegeLiu @asagege
•nitaicaro @nitaicaro
•Matthew @utdrmac
•Omkar Mestry @omanges
•Viktor Söderqvist @zuiderkwast
•kukey @kukey
•Harkrishn Patro @hpatro
•Avi Fenesh @avifenesh
•Amit Nagler @naglera
•Josh Soref @jsoref
•youngmore1024 @youngmore1024
•Rain Valentine @SoftlyRaining
•skyfirelee @artikell

•Wen Hui @hwware
•yulazariy @yulazariy
•Yakov Gusakov @gusakovy
•charsyam @charsyam
•Simon Baatz @gmbnomis
•Thalia Archibald @thaliaarchi
•chzhoo @chzhoo
•xbasel @xbasel
•Stav Ben-Tov @stav-bentov
•wuranxx @wuranxx
•Ayush Sharma @ayush933
•chx9 @chx9
•KarthikSubbarao @KarthikSubbarao
•Hüseyin Açacak @huseyinacacak-janea
•アンドリー・アンドリ@odaysec
•Ping Xie @PingXie
•Lipeng Zhu @zhulipeng
•Linus Unnebäck @LinusU
•Vitah Lin @vitahlin
•kronwerk @kronwerk
•Vadym Khoptynets @poiuj
•muelstefamzn @muelstefamzn
•zhenwei pi @pizhenwei
•George Padron @DoozkuV
•Björn Svensson @bjosv
•aradz44 @aradz44
•Hiranmoy Das Chowdhury @HiranmoyChowdhury
•Yair Gottdenker @yairgott
•Roshan Khatri @roshkhatri

•nesty92 @nesty92
•carlosfu @carlosfu
•Arthur Lee @arthurkiller
•Shai Zarka @zarkash-aws
•Sergey Kolosov @skolosov-snap
•Nathan Scott @natoscott
•lucasyonge @lucasyonge
•WelongZuo @WelongZuo
•Jim Brunner @JimB123
•jeon1226 @jeon1226
•Benson-li @li-benson
•Meinhard Zhou @MeinhardZhou
•Nikhil Manglore @Nikhil-Manglore
•Bogdan Petre @bogdanp05
•eifrah-aws @eifrah-aws
•Ricardo Dias @rjd15372
•secwall @secwall
•Anastasia Alexandrova @nastena1606
•Marek Zoremba @zori-janea
•VoletiRam @VoletiRam

https://github.com/ranshid
https://github.com/enjoy-binbin
https://github.com/enjoy-binbin
https://github.com/enjoy-binbin
https://github.com/murphyjacob4
https://github.com/madolson
https://github.com/YueTang-Vanessa
https://github.com/YueTang-Vanessa
https://github.com/YueTang-Vanessa
https://github.com/cxljs
https://github.com/sarthakaggarwal97
https://github.com/amanosme
https://github.com/hanxizh9910
https://github.com/sungming2
https://github.com/uriyage
https://github.com/Fusl
https://github.com/Nicky-2000
https://github.com/Nicky-2000
https://github.com/Nicky-2000
https://github.com/allenss-amazon
https://github.com/allenss-amazon
https://github.com/allenss-amazon
https://github.com/yzc-yzc
https://github.com/yzc-yzc
https://github.com/yzc-yzc
https://github.com/soloestoy
https://github.com/asagege
https://github.com/nitaicaro
https://github.com/utdrmac
https://github.com/omanges
https://github.com/zuiderkwast
https://github.com/kukey
https://github.com/hpatro
https://github.com/avifenesh
https://github.com/naglera
https://github.com/jsoref
https://github.com/youngmore1024
https://github.com/SoftlyRaining
https://github.com/artikell
https://github.com/hwware
https://github.com/yulazariy
https://github.com/gusakovy
https://github.com/charsyam
https://github.com/gmbnomis
https://github.com/thaliaarchi
https://github.com/chzhoo
https://github.com/xbasel
https://github.com/stav-bentov
https://github.com/stav-bentov
https://github.com/stav-bentov
https://github.com/wuranxx
https://github.com/ayush933
https://github.com/chx9
https://github.com/KarthikSubbarao
https://github.com/huseyinacacak-janea
https://github.com/huseyinacacak-janea
https://github.com/huseyinacacak-janea
https://github.com/PingXie
https://github.com/zhulipeng
https://github.com/LinusU
https://github.com/vitahlin
https://github.com/kronwerk
https://github.com/poiuj
https://github.com/muelstefamzn
https://github.com/pizhenwei
https://github.com/DoozkuV
https://github.com/bjosv
https://github.com/aradz44
https://github.com/HiranmoyChowdhury
https://github.com/yairgott
https://github.com/roshkhatri
https://github.com/nesty92
https://github.com/carlosfu
https://github.com/arthurkiller
https://github.com/zarkash-aws
https://github.com/zarkash-aws
https://github.com/zarkash-aws
https://github.com/skolosov-snap
https://github.com/skolosov-snap
https://github.com/skolosov-snap
https://github.com/natoscott
https://github.com/lucasyonge
https://github.com/WelongZuo
https://github.com/JimB123
https://github.com/jeon1226
https://github.com/li-benson
https://github.com/li-benson
https://github.com/li-benson
https://github.com/MeinhardZhou
https://github.com/Nikhil-Manglore
https://github.com/Nikhil-Manglore
https://github.com/Nikhil-Manglore
https://github.com/bogdanp05
https://github.com/eifrah-aws
https://github.com/eifrah-aws
https://github.com/eifrah-aws
https://github.com/rjd15372
https://github.com/secwall
https://github.com/nastena1606
https://github.com/zori-janea
https://github.com/zori-janea
https://github.com/zori-janea
https://github.com/VoletiRam

Thank you!

