August 28
KEYSPACE
Amsterdam

valkey-bundle: One stop shop for real-time applications

Roberto Luna Rojas Sr Developer Advocate, Valkey

Bloom Filters a example

```
# Initialize Bloom filter for each user
bloom_key = f"viewed:{user_id}"
client.bf().reserve(bloom_key, 0.01, 1000) # 1% error rate, 1000 items capacity
# Mark product as viewed
def mark_product_viewed(user_id, product_id):
    bloom_key = f"viewed:{user_id}"
    valkey client.bf().add(bloom key, product id)
# Check if product was viewed
def is_product_viewed(user_id, product_id):
    bloom_key = f"viewed:{user_id}"
    return valkey_client.bf().exists(bloom_key, product_id)
# UI Integration — show ● emoji for viewed products
for product in products:
    product['viewed'] = is_product_viewed(user_id, product['id'])
```

Why Bloom Filters?

- Memory Efficient: Uses minimal memory regardless of item count
- Fast Operations: O(1) add and lookup operations
- Scalable: Handles millions of items with consistent performance
- Probabilistic: No false negatives, controlled false positive rate
- Perfect for UX: "Have I seen this before?" is ideal for Bloom filters

Real-World Benefits

- Reduced Cognitive Load: Users can quickly identify new vs. seen products
- Improved Engagement: Focus attention on unseen items
- Memory Savings: 99% less memory than storing actual sets
- Performance: No impact on search speed

Component 4: Vector Similarity Search with Valkey-Search

The Challenge

Finding products similar to user preferences and enabling semantic search beyond keyword matching.

The Solution: Vector Search with HNSW

Valkey-Search provides high-performance vector similarity using Hierarchical Navigable Small World (HNSW) algorithm:

Valkey-Search index creation example:

```
# Index creation with vector field
FT.CREATE products ON HASH PREFIX 1 product: SCHEMA
    brand_tags TAG SEPARATOR ,
    search_tags TAG SEPARATOR ,
    region TAG
    price NUMERIC
    rating NUMERIC
    embedding VECTOR HNSW 6 TYPE FLOAT32 DIM 1024 DISTANCE_METRIC COSINE
```

Hybrid search 🔊

```
# Hybrid search query combining filters + vector similarity
def search_products(user_embedding, tags, region=None):
    # Build tag filter
    tag_filter = " ".join(f"@search_tags:{{{tag}}}}" for tag in tags)
    # Add region filter if specified
    if region:
        tag_filter += f" @region:{{{region}}}"
    # Combine with vector search
    query = f"({tag_filter})=>[KNN 25 @embedding $user_vec]"
    return valkey_client.ft("products").search(
        Query(query).return_fields("id", "name", "price", "rating")
                   .sort_by("_score", asc=False)
                   .dialect(2),
        query_params={"user_vec": user_embedding}
```

Vector Similarity Concepts

What is a Vector?

A vector is a quantity that has both magnitude (size) and direction. It's a fundamental concept in mathematics and physics, used to describe quantities that can't be fully represented by a single number alone.

Vector Similarity Concepts (cont)

1. Embedding Spaces

- Products and users exist in high-dimensional vector space
- Similar items cluster together
- Distance metrics measure similarity

2. Cosine Similarity

- Measures angle between vectors, not magnitude
- Perfect for semantic similarity (0 = identical, 1 = opposite)
- Robust to vector normalization

Vector Similarity Concepts (cont)

3. HNSW Algorithm

- Hierarchical graph structure for approximate nearest neighbor search
- Logarithmic search complexity: O(log N)
- Tunable accuracy vs. speed tradeoffs

4. Hybrid Search Benefits

- Precision: Keyword filters ensure relevance
- **Discovery**: Vector search finds unexpected matches
- **Personalization**: User embedding biases results toward preferences

Maximal Marginal Relevance (MMR)

To avoid showing too many similar products, we use MMR for result diversification: Balance relevance VS Diversity a

```
def mmr_rerank(query_embedding, candidate_embeddings, lambda_param=0.7, top_n=5):
    lambda_param: 1.0 = pure relevance, 0.0 = pure diversity
    selected indices = []
    # Start with most relevant item
    relevance scores = cosine similarity(candidates, query embedding)
    selected_indices.append(np.argmax(relevance_scores))
    # Iteratively select items that are relevant but diverse
    while len(selected_indices) < top_n:</pre>
        mmr scores = {}
        for candidate_idx in remaining candidates:
            relevance = relevance scores[candidate idx]
            # Measure similarity to already selected items
            diversity = max_similarity_to_selected(candidate_idx, selected_indices)
            # Balance relevance and diversity
            mmr_scores[candidate_idx] = lambda_param * relevance - (1 - lambda_param) * diversity
        # Select item with highest MMR score
        best_candidate = max(mmr_scores, key=mmr_scores.get)
        selected_indices.append(best_candidate)
    return selected indices
```

Component 5: Personalized Recommendations

User Persona-Based Results

The system uses detailed user personas to tailor search results 🔊

```
# Example personas
personas = {
    "101": {
        "name": "Roberto Luna-Rojas",
        "bio": "Tech enthusiast and geek by nature..",
        "interests": ["technology", "innovation", "smart_home", "gadgets"]
    "102": {
        "name": "Tay Tay",
        "bio": "Best female pop artist ever...",
        "interests": ["music", "cats"]
```

Personalization Pipeline

- 1. **User Embedding**: Convert bio and preferences to vector
- 2. **Product Matching**: Find products with similar embeddings
- 3. Context Filtering: Apply user's category and price preferences
- 4. Relevance Scoring: Combine similarity + user history + ratings
- 5. **Diversification**: Use MMR to avoid redundant recommendations

Component 6: Session Management with Valkey

The Challenge

Managing user sessions, shopping carts, and temporary state across requests while maintaining performance.

The Solution: Valkey Strings and Hashes 🔊

```
# Session storage
session_key = f"session:{session_id}"
```

```
# Store session data as hash
HSET session:abc123
  user_id 101
  cart_total 299.99
  last_activity 1704067200
  preferences '{"theme":"dark","language":"en"}'
# Shopping cart as list
LPUSH cart:abc123 "product:456" "product:789"
# Recent activity tracking
LPUSH activity:abc123 "viewed:product:456" "added_to_cart:product:789"
LTRIM activity:abc123 0 99 # Keep last 100 activities
# Session expiration
EXPIRE session:abc123 3600 # 1 hour TTL
```

Session Benefits

- Fast Access: O(1) session retrieval
- Automatic Cleanup: TTL-based session expiration
- Atomic Updates: Update cart without race conditions
- Scalability: Shared sessions across multiple app instances

Component 7: LLM Response Caching

The Challenge

Al-generated personalized product descriptions are expensive to compute and can have high latency, especially when using cloud APIs.

The Solution: Intelligent Caching Strategy 🔊

```
# Cache key structure
cache_key = f"llm_cache:user:{user_id}:product:{product_id}"
```

```
# Cache lookup before AI generation
def get_personalized_description(user_profile, product):
    cache_key = f"llm_cache:user:{user_profile['id']}:product:{product['id']}"
    # Try cache first
    cached_desc = valkey_client.get(cache_key)
    if cached desc:
        return cached desc.decode()
    # Generate new description
    prompt = f"""
    You are a helpful sales assistant. A user named {user_profile['name']}
    is considering the product: '{product['name']}'.
    Their bio is: '{user_profile['bio']}'.
    Write a personalized paragraph that addresses their interests.
    .....
    # Call AI backend (AWS Bedrock, Google Gemini, or local Ollama)
    description = generate_with_ai(prompt)
    # Cache for 2 hours
    valkey_client.set(cache_key, description, ex=7200)
    return description
```

Caching Strategy Benefits

- Cost Reduction: Avoid repeated expensive Al API calls
- Latency Improvement: Cached responses return in <1ms vs 500-2000ms for Al generation
- Scalability: Handle more concurrent users with same Al quota
- Reliability: Cached responses available even if Al service is down

Cache Performance Metrics 🔊

```
# Cache hit rate monitoring
def track_cache_performance():
    total_requests = valkey_client.get("cache:total_requests") or 0
    cache_hits = valkey_client.get("cache:hits") or 0
    hit_rate = (cache_hits / total_requests) * 100 if total_requests > 0 else 0
    print(f"Cache Hit Rate: {hit_rate:.1f}%")
    print(f"Total Requests: {total_requests}")
    print(f"Cache Hits: {cache_hits}")
```

Asynchronous Cache Warming 🔊

```
def warm_cache_async(user_profile, products):
    Background thread generates descriptions for products
    without blocking the user interface
    def background_task():
        for product in products:
            cache_key = f"llm_cache:user:{user_profile['id']}:product:{product['id']}"
            if not valkey_client.exists(cache_key):
                # Generate and cache description
                description = generate_personalized_description(user_profile, product)
                valkey client.set(cache key, description, ex=7200)
    # Start background thread
    threading.Thread(target=background_task).start()
```

Performance Characteristics

Valkey-Bundle Performance Profile

Operation	Data Structure	Complexity	Typical Latency
Product Lookup	Hash	O(1)	<1ms
User Profile	JSON	O(1)	<1ms
Viewed Check	Bloom Filter	O(1)	<0.1ms
Vector Search	HNSW Index	O(log N)	2.5-10ms
Cache Lookup	String	O(1)	<0.5ms
Session Access	Hash	O(1)	<1ms

Memory Efficiency

Memory usage comparison for 1M users tracking 10K products each

Traditional Set Storage:

1M users × 10K products × 8 bytes = 80GB

Bloom Filter Storage:

• 1M users × 1KB per filter = 1GB (98.75% memory reduction!)

False positive rate: 1% (configurable)

False negative rate: 0% (guaranteed)

Scalability Patterns

Horizontal Scaling with Valkey Cluster 🔊

```
# Cluster configuration
startup_nodes = [
    ClusterNode(host="valkey-node-1", port=6379),
    ClusterNode(host="valkey-node-2", port=6380),
    ClusterNode(host="valkey-node-3", port=6381)
client = ValkeyCluster(startup_nodes=startup_nodes)
# Data automatically sharded across nodes
# Hash tags ensure related data stays together
HSET {user:101}:profile name "Roberto Luna-Rojas"
HSET {user:101}:session cart_total 299.99
BF.ADD {user:101}:viewed product:456
```

Development and Deployment

Local Development Setup

```
# Start Valkey-bundle
docker run -d --rm --name valkey-demo -p 6379:6379 valkey/valkey-bundle
# Setup Python environment
python3 -m venv .venv
source .venv/bin/activate
pip install -r requirements.txt
# Initialize data
python3 load_data.py
python3 init_bloom_filters.py
# Run application
flask run --host=0.0.0.0 --port=5001
```

Production Considerations

- Memory Planning: Size Valkey instances based on dataset and cache requirements
- Backup Strategy: Regular RDB snapshots + AOF for durability
- Monitoring: Track cache hit rates, search latency, and memory usage
- Security: Network isolation, authentication, and encryption in transit

Key Takeaways

Why Valkey-Bundle Excels for Modern Applications

- 1. **Unified Platform**: Single solution for diverse data needs
- 2. **Performance**: Sub-millisecond operations for most use cases
- 3. **Scalability**: Horizontal scaling with cluster mode
- 4. Flexibility: Multiple data structures for different patterns
- 5. Al Integration: Native vector search for ML applications
- 6. **Developer Experience**: Rich ecosystem and tooling

When to Choose Valkey-Bundle

Perfect For:

- Real-time applications requiring low latency
- Al/ML applications with vector similarity search
- Applications with diverse data access patterns
- High-performance caching layers
- Session management and user state
- Analytics and recommendation engines

When to Choose Valkey-Bundle (cont)

- Consider Alternatives For:
 - Applications requiring strong consistency guarantees
 - Complex relational queries with joins
 - Long-term analytical data warehousing
 - Applications with minimal performance requirements

The Future of Low-Latency Applications

Valkey-bundle represents the evolution toward:

- Unified Data Platforms: Reducing operational complexity
- Al-Native Infrastructure: Built-in support for vector operations
- Edge Computing: Fast, local data processing
- Real-Time Personalization: Instant, context-aware experiences

Conclusion

This demonstration showcases how Valkey-bundle's integrated approach solves real-world challenges in modern application development. By combining traditional data structures with advanced capabilities like vector search and probabilistic filters, developers can build sophisticated, high-performance applications with a single, unified platform.

The key insight is that modern applications require diverse data access patterns - from simple key-value lookups to complex vector similarity searches. Valkey-bundle provides all these capabilities in a cohesive, high-performance package that scales from prototype to production.

Conclusion (cont)

Whether you're building recommendation engines, real-time analytics, or Al-powered applications, Valkey-bundle offers the performance, flexibility, and developer experience needed for success in today's demanding application landscape.

For more information about Valkey-bundle and to explore the complete source code of this demonstration, visit: https://valkey.io/blog/valkey-bundle-one-stop-shop-for-low-latency-modern-applications/ by Roberto Luna-Rojas

Demo enhanced from original Valkey Search Demo by Ping Xie PingXie