'.;.Augusf 28 |
:,K E Y S P AC E RS e

- -

valkey-bundle:
One stop shop for realtime applications

Roberto Luna Rojas
Sr Developer Advocate, Valkey

®Valkey '

Background The Horsehead Nebula and its surroundings.,The reflection k in the bottom left corner. / Stephanh / License: CC BY

Valkey-Bundle: Building Modern Low-Latency

Applications

() G

JSON Bloom Filter Vector Search LDAP Auth

valkey-bundle: One stop shop for
real-time applications

Valkey LDAP

Enterprise-grade
authentication through LDAP
integration.

Application Architecture Overview

Our demonstration application is a personalized product search system that combines:

o Al-Powered Personalization: Using local TinyLlama, Google Gemini, or AWS Bedrock
Nova Pro

e Hybrid Search: Traditional keyword filtering + vector similarity search

Real-time Recommendations: Personalized product descriptions generated on-
demand

Efficient Tracking: User behavior monitoring with probabilistic data structures

e High-Performance Caching: LLM response caching to minimize compute costs

Application Architecture Overview (cont)

Flask App

User Sessions
Search Logic
Caching

User history

Valkey-Bundle

Product Hashes
User JSON

Vector Search
Bloom Filters

AI Backend

e TinyLlama
e Gemini
e AWS Bedrock

LDAP Integration

Session: Deploying Valkey at Enterprise level with LDAP authentication and auditing at
13:45

i

\ Youdon'tineed to see his identification.
'0‘ : g ’)\ 4

Component 1: Product Storage with Valkey Hashes

The Challenge

Storing complex product data with multiple attributes while maintaining fast access
patterns for search and retrieval.

The Solution: Valkey Hashes

Products are stored as hash structures, providing efficient field-level access.

Valkey Hashes Python ¢J example

Product storage structure

product_data = {

'id': 12345,

'name': 'Wireless Bluetooth Headphones',

'brand': 'TechAudio',

'main_category': 'Electronics',

‘sub_category': 'Audio',

'‘price': 89.99,

Nra RGN g 5

'review_count': 1247,

‘search_tags': 'wireless,bluetooth,headphones,audio,music’,
‘region': 'NA‘,

. ‘embedding': <384/768/1024-dimensional vector bytes>

Stored as: HSET product:12345 fieldl valuel field2 value2 ...

Why Hashes?

« Memory Efficient: Optimized storage for objects with multiple fields
o Atomic Operations: Update individual fields without affecting others
o Fast Access: O(1) field retrieval and updates

o Structured Data: Natural mapping to application objects
Embedding Integration
Each product includes a vector embedding generated by:

e Local Mode: sentence-transformers (384 dimensions)
e Google Cloud: Vertex Al text-embedding-004 (768 dimensions)
e AWS Bedrock: Titan Text Embeddings v2 (1024 dimensions)

The embedding captures semantic meaning of the product for similarity search.

Demo: Valkey Hash for Products

Storing the value for product 123456789

HSET product:123456789 'id' 123456789 'name' 'Wireless Bluetooth Headphones' 'brand' 'TechAudio' 'main_category' 'Electronics'

Response:

(integer) 10

'sub_category' ‘Audio’

‘price

' 89.99 'rating' 4.5 'revie

w_count' 1247 'searc

h_tags'

'wireless,bluetooth, headphones,audio,music region

'OINAY

Retrieving the value for product 123456789

HGETALL product:123456789

Response:

1# "id" => "123456789"

2# "name" => "Wireless Bluetooth Headphones"

3# "brand" => "TechAudio"

4# "main_category" => "Electronics"

5# "sub_category" => "Audio"

6# "price" => '"89.99"

7# "rating" => "4.5"

8# "review_count" => "1247"

9# "search_tags" => "wireless,bluetooth,headphones,audio,music"
10# "region" => "NA"

Or retrieving specific field to reduce latency and network transfer

HGET product:123456789 name

Response:

"Wireless Bluetooth Headphones"

Or retrieving multiple cherry picked fields

HMGET product:123456789 name price rating

Response:

1) "Wireless Bluetooth Headphones"
2) "89.99"
3) "4.5"

Component 2: User Profiles with Valkey-JSON

The Challenge

Storing complex user profiles with nested data structures, purchase history, and dynamic
attributes that may evolve over time.

The Solution: Valkey-JSON

Users are stored as native JSON documents, enabling rich data structures:

Valkey-JSON Python ¢J example

User profile structure
user_profile = {

Ilidll : II6379II,

"name'": "Roberto Luna-Rojas",

"country": "Mexico [@"

"bio": "Tech enthusiast and early adopter who loves cutting-edge gadgets...",

"avatar": "...",
"purchase_history": [

{"product_id": 456, "date": "2024-12-15", "rating": 5, "price": 123.45},

{"product_id": 789, "date": "2024-11-20", "rating": 4, "price": 234.56}
1,
"preferences": {

"categories": ["electronics", "gaming"],

"price_range": {"min": 50, "max": 500},

"brands": ["Apple", "Samsung", "Sony"]

},

"embedding": [0.1234, -0.5678, 0.9012, ...] // User preference vector
I

Stored as: JSON.SET user:6379 $ '{"id":"101","name":"Roberto Luna-Rojas",...}'

Why JSON?

e Flexible Schema: Easy to add new fields without migration

o Nested Structures: Natural representation of complex data

o Atomic Updates: Modify specific paths within the document

e Query Capabilities: JSONPath queries for complex data retrieval

e Type Preservation: Maintains data types (hnumbers, booleans, arrays)

Demo: Valkey JSON

Store the user JSON document

Response:

OK

Retrieve the whole JSON document

valkey-cli -h localhost -p 6379 -3 JSON.GET user:6379 $ | jg -C '."

Response:

[
{
"id": 6379,
“"name'": "Roberto Luna-Rojas",
"country": "Mexico [@",
"bio": "Tech enthusiast and early adopter who loves cutting-edge gadgets...",
"avatar': "...",
"purchase_history": [
{"product_id": 456, "date": "2024-12-15", "rating": 5, "price": 123.45},
{"product_id": 789, "date": "2024-11-20", "rating": 4, "price": 234.56}
1,
"preferences": {
"categories": ["electronics", "gaming" 1],
"price_range": { "min": 50, "max": 500 },
"brands": ["Apple", "Samsung", "Sony"]

}
1

What if | want to only find products over $100 and bellow $2007? Let's use JSONPath

valkey-cli -h localhost -p 6379 -3 \
JSON.GET user:6379 \
'$.purchase_history[?(@.price > 100 && @.price < 200)]1"' \

| jg -C "."
Response:

[
{
"product_id": 456,
"date": "2024-12-15",
Al lngsE s’
"price": 123.45

If | want to update the rating for product 789, | can do so:

JSONDSENISEeRA63 798N
$.purchase_history[?(@.product_id==789)].rating 4.5

Response:

OK

Verify the change by getting the product details:

valkey-cli -h localhost -p 6379 -3 \
JSON.GET user:6379 \
'$.purchase_history[?(@.product_id==789)]"' \
| jg -C '."

Response:

[
{
"product_id": 789,
"date": "2024-11-20",
R Al NgarEed =5
"price": 234.56

User Embedding Generation

User embeddings are created by combining:

Bio text semantic analysis

Purchase history patterns

Preference indicators

Behavioral signals

This creates a vector representation of user preferences for personalized search.

Component 3: Viewed Products Tracking with Valkey-Bloom

The Challenge

Efficiently tracking which products each user has viewed without storing massive sets that
consume memory and slow down queries.

The Solution: Bloom Filters

Probabilistic data structure that provides memory-efficient membership testing.

{x,y,2}

Bloom Filters ¢J example

Initialize Bloom filter for each user
bloom_key = f"viewed:{user_id}"
client.bf().reserve(bloom_key, 0.01, 1000) # 1% error rate, 1000 items capacity

Mark product as viewed

def mark_product_viewed(user_id, product_id):
bloom_key = f"viewed:{user_id}"
valkey_client.bf().add(bloom_key, product_id)

Check if product was viewed
def is_product_viewed(user_id, product_id):
bloom_key = f"viewed:{user_id}"
return valkey_client.bf().exists(bloom_key, product_id)

UI Integration - show ¢« emoji for viewed products
for product in products:

product['viewed'] = is_product_viewed(user_id, product['id'])

Why Bloom Filters?

« Memory Efficient: Uses minimal memory regardless of item count

e Fast Operations: O(1) add and lookup operations

Scalable: Handles millions of items with consistent performance

Probabilistic: No false negatives, controlled false positive rate

Perfect for UX: "Have | seen this before?" is ideal for Bloom filters

Real-World Benefits

e Reduced Cognitive Load: Users can quickly identify new vs. seen products
e Improved Engagement: Focus attention on unseen items
e Memory Savings: 99% less memory than storing actual sets

e Performance: No impact on search speed

Component 4: Vector Similarity Search with Valkey-Search

The Challenge

Finding products similar to user preferences and enabling semantic search beyond
keyword matching.

The Solution: Vector Search with HNSW

Valkey-Search provides high-performance vector similarity using Hierarchical Navigable
Small World (HNSW) algorithm:

Valkey-Search index creation example:

Index creation with vector field
FT.CREATE products ON HASH PREFIX 1 product: SCHEMA
brand_tags TAG SEPARATOR ,
search_tags TAG SEPARATOR ,
region TAG
price NUMERIC
rating NUMERIC

embedding VECTOR HNSW 6 TYPE FLOAT32 DIM 1024 DISTANCE_METRIC COSINE

Hybrid search ¢

Hybrid search query combining filters + vector similarity
def search_products(user_embedding, tags, region=None):
Build tag filter

tag_filter = " ".join(f"@search_tags:{{{tag}}}" for tag in tags)
Add region filter if specified
if region:

tag_filter += f" @region:{{{region}}}"
Combine with vector search
query = f"({tag_filter})=>[KNN 25 @embedding $user_vec]"
return valkey_client.ft("products").search(
Query(query).return_fields("id", "name", "price", "rating")
.sort_by("_score", asc=False)
.dialect(2),
query_params={"user_vec": user_embedding}

Vector Similarity Concepts

What is a Vector?

both direction and magnitude!

A vector is a quantity that has both magnitude (size) and direction. It's a fundamental
concept in mathematics and physics, used to describe quantities that can't be fully
represented by a single number alone.

Vector Similarity Concepts (cont)

1. Embedding Spaces

e Products and users exist in high-dimensional vector space
o Similar items cluster together

e Distance metrics measure similarity

2. Cosine Similarity

e Measures angle between vectors, not magnitude
o Perfect for semantic similarity (O = identical, 1 = opposite)

e Robust to vector normalization

Vector Similarity Concepts (cont)

3. HNSW Algorithm
e Hierarchical graph structure for approximate nearest neighbor search
e Logarithmic search complexity: O(log N)

e Tunable accuracy vs. speed tradeoffs

4. Hybrid Search Benefits

e Precision: Keyword filters ensure relevance
e Discovery: Vector search finds unexpected matches

e Personalization: User embedding biases results toward preferences

Maximal Marginal Relevance (MMR)

To avoid showing too many similar products, we use MMR for result diversification: Balance
relevance VS Diversity ¢J

def mmr_rerank(query_embedding, candidate_embeddings, lambda_param=0.7, top_n=5):

lambda_param: 1.0 = pure relevance, 0.0 = pure diversity
selected_indices = []
Start with most relevant item
relevance_scores = cosine_similarity(candidates, query_embedding)
selected_indices.append(np.argmax(relevance_scores))
Iteratively select items that are relevant but diverse
while len(selected_indices) < top_n:
mmr_scores = {}
for candidate_idx in remaining_candidates:
relevance = relevance_scores[candidate_idx]
Measure similarity to already selected items
diversity = max_similarity_to_selected(candidate_idx, selected_indices)
Balance relevance and diversity
mmr_scores [candidate_idx] = lambda_param x relevance - (1 - lambda_param) x diversity
Select item with highest MMR score
best_candidate = max(mmr_scores, key=mmr_scores.get)
selected_indices.append(best_candidate)
return selected_indices

Component 5: Personalized Recommendations
User Persona-Based Results
The system uses detailed user personas to tailor search results ¢J

Example personas
personas = {

Il101ll: {
""name'": "Roberto Luna-Rojas",
"bio": "Tech enthusiast and geek by nature..",
"interests": ["technology", "innovation", "smart_home", "gadgets"]
},
1 02": {
"name": "Tay Tay",
"bio": "Best female pop artist ever...",
"interests": ["music", "cats"]
}

Personalization Pipeline
1. User Embedding: Convert bio and preferences to vector
2. Product Matching: Find products with similar embeddings
3. Context Filtering: Apply user's category and price preferences
4. Relevance Scoring: Combine similarity + user history + ratings

5. Diversification: Use MMR to avoid redundant recommendations

Component 6: Session Management with Valkey

The Challenge

Managing user sessions, shopping carts, and temporary state across requests while
maintaining performance.

The Solution: Valkey Strings and Hashes ¢

Session storage
session_key = f'"session:{session_id}"

Store session data as hash
HSET session:abc123
user_id 101
cart_total 299.99
last_activity 1704067200
preferences '{"theme":"dark",'"language":"en"}'

Shopping cart as list
LPUSH cart:abc123 "product:456" "product:789"

Recent activity tracking

LPUSH activity:abcl23 "viewed:product:456" "added_to_cart:product:789"
LTRIM activity:abcl23 @ 99 # Keep last 100 activities

Session expiration
EXPIRE session:abcl123 3600 # 1 hour TTL

Session Benefits

e Fast Access: O(1) session retrieval
o Automatic Cleanup: TTL-based session expiration
o Atomic Updates: Update cart without race conditions

e Scalability: Shared sessions across multiple app instances

Component 7: LLM Response Caching

The Challenge

Al-generated personalized product descriptions are expensive to compute and can have
high latency, especially when using cloud APIs.

The Solution: Intelligent Caching Strategy ¢J

Cache key structure
cache_key = f"1lm_cache:user:{user_id}:product:{product_id}"

Cache lookup before AI generation
def get_personalized_description(user_profile, product):
cache_key = f"1lm_cache:user:{user_profile['id']}:product:{product['id"']}"
Try cache first
cached_desc = valkey_client.get(cache_key)
if cached_desc:
return cached_desc.decode()
Generate new description
prompt — fllll 11
You are a helpful sales assistant. A user named {user_profile['name']}
is considering the product: '{product['name']}"'.
Their bio is: '{user_profile['bio'l}"'.
Write a personalized paragraph that addresses their interests.
Call AI backend (AWS Bedrock, Google Gemini, or local Ollama)
description = generate_with_ai(prompt)
Cache for 2 hours
valkey_client.set(cache_key, description, ex=7200)
return description

Caching Strategy Benefits

e Cost Reduction: Avoid repeated expensive Al API calls

o Latency Improvement: Cached responses return in <1ms vs 500-2000ms for Al
generation

e Scalability: Handle more concurrent users with same Al quota

e Reliability: Cached responses available even if Al service is down

Cache Performance Metrics ¢J

Cache hit rate monitoring
def track_cache_performance():
total_requests = valkey_client.get("cache:total_requests") or 0
cache_hits = valkey_client.get("cache:hits") or 0
hit_rate = (cache_hits / total_requests) x 100 if total_requests > 0 else 0
print(f"Cache Hit Rate: {hit_rate:.1f}%")
print(f"Total Requests: {total_requests}")
print(f"Cache Hits: {cache_hits}")

Asynchronous Cache Warming ¢J

def warm_cache_async(user_profile, products):

Background thread generates descriptions for products
without blocking the user interface
def background_task():
for product in products:
cache_key = f"1llm_cache:user:{user_profile['id']}:product:{product['id"']}"
if not valkey_client.exists(cache_key):
Generate and cache description
description = generate_personalized_description(user_profile, product)

valkey_client.set(cache_key, description, ex=7200)
Start background thread

threading.Thread(target=background_task).start()

Performance Characteristics

Valkey-Bundle Performance Profile

Operation Data Structure Complexity Typical Latency

Product Lookup Hash O(1) <Tms
User Profile JSON O(1) <1ms
Viewed Check Bloom Filter O(1) <0.1ms
Vector Search HNSW Index O(log N) 2.5-10ms
Cache Lookup String O(1) <0.5ms

Session Access Hash O(1) <Tms

Memory Efficiency
Memory usage comparison for 1M users tracking 10K products each
Traditional Set Storage:
e 1M users x 10K products x 8 bytes = 80GB
Bloom Filter Storage:
e 1M users x 1KB per filter = 1GB (98.75% memory reduction!)

False positive rate: 1% (configurable)
False negative rate: 0% (guaranteed)

Scalability Patterns
Horizontal Scaling with Valkey Cluster ¢

Cluster configuration

startup_nodes = [
ClusterNode(host="valkey-node-1", port=6379),
ClusterNode(host="valkey-node-2", port=6380),
ClusterNode(host="valkey-node-3", port=6381)

]

client = ValkeyCluster(startup_nodes=startup_nodes)

Data automatically sharded across nodes

Hash tags ensure related data stays together

HSET {user:101}:profile name "Roberto Luna-Rojas"

HSET {user:101}:session cart_total 299.99

BF.ADD {user:101}:viewed product:456

Development and Deployment

Local Development Setup

Start Valkey-bundle
docker run —d ——rm —--—name valkey-demo -p 6379:6379 valkey/valkey—-bundle

Setup Python environment
python3 -m venv .venv

source .venv/bin/activate

pip install -r requirements.txt

Initialize data
python3 load_data.py
python3 init_bloom_filters.py

Run application
flask run ——host=0.0.0.0 ——port=5001

Production Considerations

e Memory Planning: Size Valkey instances based on dataset and cache requirements
o Backup Strategy: Regular RDB snapshots + AOF for durability
e Monitoring: Track cache hit rates, search latency, and memory usage

e Security: Network isolation, authentication, and encryption in transit

Key Takeaways

Why Valkey-Bundle Excels for Modern Applications

1. Unified Platform: Single solution for diverse data needs

2. Performance: Sub-millisecond operations for most use cases
3. Scalability: Horizontal scaling with cluster mode

4. Flexibility: Multiple data structures for different patterns

5. Al Integration: Native vector search for ML applications

6. Developer Experience: Rich ecosystem and tooling

When to Choose Valkey-Bundle
Perfect For:

e Real-time applications requiring low latency

Al/ML applications with vector similarity search

Applications with diverse data access patterns
e High-performance caching layers

e Session management and user state

Analytics and recommendation engines

When to Choose Valkey-Bundie (cont)

I Consider Alternatives For:

e Applications requiring strong consistency guarantees
o Complex relational queries with joins
e Long-term analytical data warehousing

e Applications with minimal performance requirements

The Future of Low-Latency Applications

Valkey-bundle represents the evolution toward:

o Unified Data Platforms: Reducing operational complexity
e Al-Native Infrastructure: Built-in support for vector operations
o Edge Computing: Fast, local data processing

e Real-Time Personalization: Instant, context-aware experiences

Conclusion

This demonstration showcases how Valkey-bundle's integrated approach solves real-
world challenges in modern application development. By combining traditional data
structures with advanced capabilities like vector search and probabilistic filters, developers
can build sophisticated, high-performance applications with a single, unified platform.

The key insight is that modern applications require diverse data access patterns - from
simple key-value lookups to complex vector similarity searches. Valkey-bundle provides all
these capabilities in a cohesive, high-performance package that scales from prototype to
production.

Conclusion (cont)

Whether you're building recommendation engines, real-time analytics, or Al-powered
applications, Valkey-bundle offers the performance, flexibility, and developer experience
needed for success in today's demanding application landscape.

For more information about Valkey-bundle and to explore the complete source code of
this demonstration, visit: https://valkey.io/blog/valkey-bundle-one-stop-shop-for-low-
latency-modern-applications/ by Roberto Luna-Rojas

Demo enhanced from original Valkey Search Demo by Ping Xie PingXie

