
Demystifying Valkey Clustering: 
Architecture, Fault Tolerance, and Scalability

Harkrishn Patro
Senior Software Engineer - AWS/Valkey Maintainer

Background The Horsehead Nebula and its surroundings. The reflection nebula NGC 2023 in the bottom left corner. / Stephanh / License: CC BY 4.0



Agenda

• Overview
• Operation mode
• Cluster mode components
• Cluster coordination mechanisms
• Recent improvements
• Benchmark
• Future work



Introducing the Valkey project

• In-memory key value store
• Supports over 200 commands and 

multiple data structures like hashes, 
sets, sorted sets

• Used for caching, session management, 
leaderboard, message broker



Operation mode

STANDALONE CLUSTER 



Valkey Standalone Overview

• Single keyspace
• Asynchronous replication
• Scalable reads



Valkey Standalone - Summary

• Easy to setup
• Lack of fault tolerance
• Memory and write throughput 

bottleneck



Valkey Cluster Overview

• Horizontally scalable
• Homogenous setup
• Server enabled data sharding
• Automatic client redirection
• In-built fault tolerance



Cluster Mode Components

• Cluster Node
• Cluster Slots
• Cluster Bus



Cluster Node

• Serves data
• Health detection
• Serves topology information



Cluster Node (Contd.)

• Primary
• Quorum - Voting member

• Replica
• Election candidate



Cluster Slots

• Hashes key to a slot
• Slot to a node
• Key distribution – 16384 slots
• Algorithm - CRC16(key) % 16384
• Primary – one or more slots



Cluster Bus

• Bidirectional persistent TCP connection 
between nodes

• Mesh topology
• Custom message protocol
• Gossip – piggyback information
• Supports Pub/Sub traffic



Cluster Bus – Message Type

• New node discovery - MEET
• Heart beat – PING / PONG
• Node failure – FAIL / UPDATE 
• PubSub – PUBSUB / PUBSUBSHARD



Cluster Bus - Message Header Format



Cluster Bus - Message Header (PING/PONG/MEET)



Cluster Coordination Mechanism

• Membership
• Redirection - Client
• Failure detection
• Failover
• Versioning – Conflict Resolution



Cluster Node Membership 



Node Membership – Seed node discovery



Node Membership – Gossip



Node Membership– Discovery via gossip



Node Membership – Fully connected



Node Redirection - Client



Failure Detection – PING/PONG

• ping-sent
• pong-received
• Partial failure – node-timeout / 2
• Complete failure (Quorum) – node-timeout
• node-timeout is configurable



Failure Detection – Healthy State



Failure Detection – Partial failure



Failure Detection – Partial failure



Failure Detection – Healthy



Failure Detection - Partition



Failure Detection – Time out gossip



Failure Detection - Broadcast



Failover



Failover – Failure detection



Failover – Link disconnection



Failover – Replica promotion request



Failover – Replica promotion request



Failover – Replica promoted



Failover – Partition heal start



Failover – New topology



Conflict Resolution - Epoch

• Decentralized cluster – no single source of truth
• Monotonically increasing counter
• Conflict resolution
• config epoch, node id to break ties safely



Conflict Resolution – Epoch Types

• Node level epoch – config epoch
• Per node epoch indicating authority over slots

• Cluster wide epoch – cluster epoch
• Global for the entire cluster
• Incremented during failovers to assign unique epochs



Conflict Resolution - Epoch



Epoch – Vote Request



Epoch Bump



Epoch Bump - Broadcast



Epoch Bump – New Topology



Epoch Bump – Conflict Resolution



Valkey Clustering improvements

• Fast failover with multiple primary failures
• Light message header type  (~30 bytes)
• Connection rate limiting



Can it scale?

• Peer to peer health detection, does it scale?
• Message transfer rate is high during ideal state ?
• Too many votes (quorum of primaries) for failover ?



Benchmark - Results

• Scales well upto 2000 nodes 
cluster

• Node timeout - 15 seconds
• 10% node failure detection and 

failover time ~ 20 seconds 



Benchmark - Results



What’s next?

• Reduce steady state CPU utilization
• Offload cluster message processing 
• Additional observability information
• Fuzzy testing



Get involved in the project

github.com/valkey-iovalkey/valkeyvalkey.io



Thank you!

Harkrishn Patro
Software Engineer – AWS
github.com/hpatro
linkedin.com/in/harkrishn-patro


