
Connection Storms:
Detecting and Defusing Outages
Before Valkey Crashes

Vadym Khoptynets
Senior Software Development Engineer at AWS

Background The Horsehead Nebula and its surroundings. The reflection nebula NGC 2023 in the bottom left corner. / Stephanh / License: CC BY 4.0

The 2 AM Wakeup Call
• Pager goes off - Valkey cluster alert
• Grafana shows gaps metrics
• App team: "We can't connect to Valkey!"
• Root cause: connection storm

What is a Connection Storm?

Sudden surge of TCP connections overloads the
networking stack

What is a Connection Storm?

Clients fail to connect

Network is overloaded

Accept queue is full

SYN queue is full

Conntrack table is full

Client Connection Management

Connection Pool
valkey-py

Multiple sockets

Reuses connections

Risk of storms if pool is unbounded

Multiplexing
valkey-glide

Commands multiplexed on one TCP channel

Lower overhead

Can be a bottleneck

Client Reconnect Strategies

Reconnect
Strategy

Jitter percent
The Jitter percent on

the calculated
duration

Exponent base
The exponent base
configured for the

strategy

Number of
retries

Number of retry
attempts that the

client should perform

Factor
The multiplier that will

be applied to the
waiting time between

each retry.

GLIDE example

backoff = BackoffStrategy(
num_of_retries=5,
factor=1000,
exponent_base=2,
jitter_percent=20,

)

config = GlideClientConfiguration(
...
reconnect_strategy=backoff,
...

)
client = await GlideClient.create(config)

Observability Gaps

What's
there

What’s
missing

Bandwidth and
PPS in cloud

Conntrack
table size

Syn/accept
queue size

Rejected
connections

Total
connections

Connected clients

Conntrack Table

What it does
Tracks all active network connections

Overflow policy
Drop

How to observe?
net.netfilter.nf_conntrack_count

How to configure?
net.netfilter.nf_conntrack_max

SYN Queue

Client sends SYN

Server appends to SYN queue
Responds with SYN, ACK

Client sends ACK

Server appends to accept
queue

Waits for the process to accept

SYN Queue

What it does
Holds half-open TCP handshakes

Overflow policy
Sends SYN cookies (unless off)

How to observe?

ss -anH state syn-recv | wc -l

How to configure?
tcp_max_syn_backlog

tcp_syncookies

SYN Queue

Client sends SYN

Server appends to SYN queue
Responds with SYN, ACK

Client sends ACK

Server appends to accept
queue

Waits for the process to accept

Accept Queue

What it does
Tracks connections ready for Valkey to

accept

Overflow policy
Sends RST when full

How to observe?

ss -Hln sport = <port> src <host>
| awk '{print $4}'

How to configure?
net.core.somaxconn

tcp-backlog

Cloud

Bandwidth Conntrack PPS

Connection Storm Checklist

Connection Storm Survival

Manage
connections
Use connection

pool or
multiplexing

Obesrve cloud
Bandwidth,

conntrack, PPS all
have limits in

cloud

Back-off
Clients must retry
with back-off and

jitter

Observe kernel
conntrack, SYN,
accept queues all

have limits

Thank You!

